• 제목/요약/키워드: nucleophilic production

검색결과 8건 처리시간 0.023초

An optimized radiosynthesis of 18F-THK-5351 for routine production on TRACERlab™ FXFN

  • Park, Jun Young;Son, Jeongmin;Yun, Mijin;Chun, Joong-Hyun
    • 대한방사성의약품학회지
    • /
    • 제3권2호
    • /
    • pp.91-97
    • /
    • 2017
  • $^{18}F-THK-5351$ is a PET radiotracer to image the hyperphosphorylated tau fibrillar aggregates in human brain. This protocol describes the optimized radiosynthesis of $^{18}F-THK-5351$ using a commercial GE $TRACERlab^{TM}$ $FX_{FN}$ radiosynthesis module. $^{18}F-THK-5351$ was prepared by nucleophilic [$^{18}F$]fluorination from its protected tosylate precursors, (S)-(2-(2-methylaminopyrid-5-yl)-6-[[2-(tetrahydro-2H-pyran-2-yloxy)-3-tosyloxy]propoxy] quinolone(THK-5352), at $110^{\circ}C$ for 10 min in dimethyl sulfoxide, followed by deprotection with 1 N HCl. The average radiochemical yield of $^{18}F-THK-5351$ was $31.9{\pm}6.7%$(decay-corrected, n = 10), with molar activity of $198.1{\pm}33.9GBq/{\mu}mol$($5.4{\pm}0.9Ci/{\mu}mol$, n = 10). The radiochemical purity was determined to be above 98%. The overall production time including HPLC purification is approximately 70 min. This fully-automated protocol is validated for clinical use.

Aliphatic radiofluorination using TBAHCO3 eluate in hydrous organic medium

  • Kwon, Young-Do;Son, Jeongmin;Chun, Joong-Hyun
    • 대한방사성의약품학회지
    • /
    • 제4권2호
    • /
    • pp.51-56
    • /
    • 2018
  • Azeotropic drying process is routinely applied to enhance nucleophilicity of $[^{18}F]$fluoride ion during the nucleophilic production of PET radiotracers; however, the drying process requires usually 15-25 min. Due to the high demand of employing fluorine-18 ($t_{1/2}=109.8min$) in PET radiopharmaceutical production, several research groups have focused on the method development, obviating tedious removal process of the residual target water ($[^{18}O]H_2O$) for $[^{18}F]$fluoride ion complex to be used in radiofluorination. Some development in radiofluorination in a mixed organic solvent system was demonstrated with various aliphatic substrates, but only kryptand as a phase transfer agent was utilized in the reported method. Here, we extend to investigate the development scope of applicability with basic alkyl ammonium salt as a phase transfer agent through the extensive elution efficiency study and radiofluorination outcome for aliphatic radiofluorination.

Automated radiosynthesis for the routine production of [18F]FPEB for imaging metabotropic glutamate receptor 5 (mGluRS)

  • Kyung Rok Nam;Sang Jin Han;Kyo Chul Lee;Jae Yong Choi
    • 대한방사성의약품학회지
    • /
    • 제8권1호
    • /
    • pp.3-8
    • /
    • 2022
  • Alteration of the mGluR5 density is closely related to various brain diseases including schizophrenia, depression, Parkinson's disease, and Alzheimer's disease. Therefore, mGluR5 is considered as a valuable imaging biomarker for brain disease and many radiopharmaceuticals have been developed so far. Among them, [18F]FPEB has favorable pharmacokinetic characteristics, and this is the most frequently used radiopharmaceutical for preclinical and clinical studies. In the present study, we want to introduce the optimized radiosynthetic method for the routine production of [18F]FPEB using a GE TRACERlabTM FXFN pro module. In addition, the entire process was monitored with a webcam to solve the problems arising from the synthetic process. As a result, [18F]FPEB was prepared by nucleophilic substitution from its nitro- precursor at 120℃ for 20 min in dimethyl sulfoxide. Radiochemical yield was 13.7 ± 5.1% (decay-corrected, n = 91) with the molar activity of 84 ± 17 GBq/µmol at the end of synthesis. The radiochemical purity was determined to be above 96%. The manufactured [18F]FPEB injection for quality controls were carried out in accordance with an KIRAMS approved protocol, as per ICH and USP guidelines.

Methodological approaches for the clinical routine production of [11C]raclopride

  • Cheong, Il-koo;Lee, Jihye;Lee, Sang-Yoon
    • 대한방사성의약품학회지
    • /
    • 제3권1호
    • /
    • pp.15-17
    • /
    • 2017
  • In carbon-11 labeling, $[^{11}C]$methyltriflate (methyltrifluoromethanesulfonate, MeOTf) is the most widely used through mild reaction condition with high yield. Strong inorganic bases, KOH, NaH and so on, were chosen to activate precursors that have phenolic alcohol as a nucleophilic moiety, because of its poor nucleophilicity. However, these catalyst can also react with radioactive intermediate, $[^{11}C]$MeOTf to afford side products. We will briefly discuss the history of the effort to increase the yield of $[^{11}C]$raclopride and suggest the alternate method for better radiochemical yield and consistency.

PHOTOCATALYTIC ISOQUINOLINE PRODUCTION AND N-ALKYLATION BY PLATINIZED TITANIUM(IV) OXIDE PARTICLES SUSPENDED IN ALCOHOLIC SOLUTION OF PHENETHYLAMINES

  • Bunsho Ohtani;Yoshiko Moriguchi;Nishimoto, Sei-Ichi;Tomoyuki Inui
    • Journal of Photoscience
    • /
    • 제1권2호
    • /
    • pp.107-111
    • /
    • 1994
  • Photocatalytic ($\lambda$$_{ex}$ > 300 nm) reaction at room temperature by platinized titanium (IV) oxide particles produced 1-methyl-1, 2, 3, 4-tetrahydroisoquinolines (MIQ's) from phenethylamines in aqueous ethanol suspension under deaerated atmosphere. Among the phenethylamines, dopamine (2-(3, 4-dihydroxyphenyl) ethylamine) showed the highest reactivity to give MIQ almost selectively under the neutralized conditions. The other phenethylamines gave predominantly N-alkylated and N, N-dialkylated products in the methanol or ethanol solutions. The reaction mechanism includes a Schiff base intermediate to undergo either nucleophilic attack leading to MIQ or reduction to N-alkylated products.

  • PDF

Optimized production method of [18F]flortaucipir injection for imaging tau pathology in patients with Alzheimer's disease

  • Kyung Rok Nam;Sang Jin Han;Nam Hun Lee;Min Yong Lee;Youngduk Kim;Kyo Chul Lee;Yong Jin Lee;Young Hoon Ryu;Jae Yong Choi
    • 대한방사성의약품학회지
    • /
    • 제6권2호
    • /
    • pp.61-68
    • /
    • 2020
  • Aggregated neurofibrillary tangles (NFTs) are a pathological hallmark in Alzheimer's disease (AD) and many radiopharmaceuticals targeting NFTs have been developed so far. Among these, [18F]flortaucipir (TAUVIDTM) is the first approved radiopharmaceutical in the Food and Drug Administration (FDA) to image tau pathology. In the present study, we describe the optimized radiosynthetic method for the routine production of [18F] flortaucipir using a commercialized automation module (i.e. GE TRACERlabTM FXFN pro). [18F]Flortaucipir was prepared by nucleophilic substitution from its N-tert-butoxycarbonyl protected nitro precursor, tertbutyl 7-(6-nitropyridin-3-yl)-5H-pyrido[4,3-b]indole-5-carboxylate, at 130℃ for 10 min in dimethyl sulfoxide. The mean radiochemical yield was 20 ± 4.3% (decay-corrected, n = 47) with the molar activity of 218 ± 32 GBq/µmol at the end of synthesis. The radiochemical purity was determined to be above 95%. The overall production time including quality control is approximately 100min. The final produced [18F]flortaucipir injection meets the USP criteria for quality control. Thus, this fully automated system is validated for clinical use.

18FDG Synthesis and Supply: a Journey from Existing Centralized to Future Decentralized Models

  • uz Zaman, Maseeh;Fatima, Nosheen;Sajjad, Zafar;Zaman, Unaiza;Tahseen, Rabia;Zaman, Areeba
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권23호
    • /
    • pp.10057-10059
    • /
    • 2015
  • Positron emission tomography (PET) as the functional component of current hybrid imaging (like PET/CT or PET/MRI) seems to dominate the horizon of medical imaging in coming decades. $^{18}$Flourodeoxyglucose ($^{18}FDG$) is the most commonly used probe in oncology and also in cardiology and neurology around the globe. However, the major capital cost and exorbitant running expenditure of low to medium energy cyclotrons (about 20 MeV) and radiochemistry units are the seminal reasons of low number of cyclotrons but mushroom growth pattern of PET scanners. This fact and longer half-life of $^{18}F$ (110 minutes) have paved the path of a centralized model in which $^{18}FDG$ is produced by commercial PET radiopharmacies and the finished product (multi-dose vial with tungsten shielding) is dispensed to customers having only PET scanners. This indeed reduced the cost but has limitations of dependence upon timely arrival of daily shipments as delay caused by any reason results in cancellation or rescheduling of the PET procedures. In recent years, industry and academia have taken a step forward by producing low energy, table top cyclotrons with compact and automated radiochemistry units (Lab-on-Chip). This decentralized strategy enables the users to produce on-demand doses of PET probe themselves at reasonably low cost using an automated and user-friendly technology. This technological development would indeed provide a real impetus to the availability of complete set up of PET based molecular imaging at an affordable cost to the developing countries.

타우 PET영상을 위한 18F-THK5351의 표지방법 개발 (Development of Radiosynthetic Methods of 18F-THK5351 for tau PET Imaging)

  • 박준영;손정민;전중현
    • 핵의학기술
    • /
    • 제22권1호
    • /
    • pp.51-54
    • /
    • 2018
  • 본 연구는 타우 PET용 방사성의약품으로 개발된 $^{18}F-THK5351$의 임상적용을 위하여 상용화된 자동 합성장치에 적용한 표지방법을 개발하고자 하였다. $^{18}F-THK5351$의 표지법 개발은 HPLC 분리정제 전 표지반응물의 유기용매, 불순물 및 미반응 물질을 제거하기 위해 고체상 추출 카트리지를 사용하여 정제하는 과정을 포함한 방법(method I)과 전처리 정제과정을 포함하지 않은 방법(method II)으로 나누어 진행하였다. $^{18}F-THK5351$ 표지는 $Sep-Pak^{(R)}$ QMA 카트리지를 사용하여 흡착한 불소-18 음이온을 $K_{2.2.2}/K_2CO_3$으로 용출한 후 $100^{\circ}C$에서 진공상태와 헬륨의 흐름하에 건조한 후 표지 전구체와 $110^{\circ}C$에서 10분간 반응시켰다. 반응 후 1 N HCl을 첨가하여 보호기를 제거한 후 0.8 M $CH_3COOK$를 사용하여 표지 반응물을 중화하였다. 이후 전처리 정제의 유무에 따라 method I과 method II로 진행하였다. Method I에서 전처리 정제 과정의 최적화를 위해 $Sep-Pak^{(R)}$ tC18과 $Oasis^{(R)}$ HLB 고체상 추출 카트리지를 사용하여 비교한 결과 $Sep-Pak^{(R)}$ tC18 카트리지는 57.2%의 표지 반응물이 빠져 나갔고, $Oasis^{(R)}$ HLB 카트리지는 40.6%의 표지 반응물이 빠져나가는 것을 확인할 수 있었다. Method I 표지방법의 방사화학적 수율은 $23.8{\pm}1.9%$(decay-corrected, n=4) 이었고, method II 표지방법의 방사화학적 수율은 $31.9{\pm}6.7%$(decay-corrected, n=10) 이었다. 본 연구를 통해 전처리 정제과정을 거쳐 HPLC로 분리정제하는 방법과 전처리 정제과정을 거치지 않고 표지반응물을 바로 HPLC 정제하는 표지방법을 상용화된 자동합성장치를 사용하여 성공적으로 개발하였다. 하지만 전처리 정제과정을 포함한 표지방법은 표지반응물의 손실이 많아 방사화학적 수율이 낮아지는 단점을 발견하였다. 본 연구에서 개발된 전처리 정제과정이 생략된 $^{18}F-THK5351$의 표지방법은 향후 통상적으로 생산 시 보다 유용한 표지방법으로 사용될 것으로 기대된다.