• Title/Summary/Keyword: nucleophilic addition

Search Result 138, Processing Time 0.022 seconds

A Mechanistic Study on the Nucleophilic Addition Reactions of Benzylamines to the Activated Olefins

  • Oh, Hyuck-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.1195-1198
    • /
    • 2008
  • Kinetic studies of the additions of benzylamines to a noncyclic dicarbonyl group activated olefin, methyl $\alpha$-acetyl-$\beta$ -phenylacrylates (MAP), in acetonitrile at 30.0 ${^{\circ}C}$ are reported. The rates are lower than those for the cyclic dicarbonyl group activated olefins. The addition occurs in a single step with concurrent formation of the $C_\alpha$ -N and $C_\beta$ -H bonds through a four-center hydrogen bonded transition state. The kinetic isotope effects ($k_H/k_D$ > 1.0) measured with deuterated benzylamines ($XC_6H_4CH_2ND_2$) increase with a stronger electron acceptor substituent ($\delta\sigma$ X > 0) which is the same trend as those found for other dicarbonyl group activated series (1-4). The sign and magnitude of the cross-interaction constant, ρXY, is comparable to those for the normal bond formation processes in the $S_N2$ and addition reactions. The relatively low ${\Delta}H^\neq$ and large negative ${\Delta}S^\neq$ values are also consistent with the mechanism proposed.

Kinetics and Mechanism of the Addition of Benzylamines to Ethyl-α-cyanocinnamates in Acetonitrile

  • Oh, Hyuck-Keun;Yang, Jin-Hee;Hwang, Young-Hee;Lee, Hai-Whang;Lee, Ik-Choon
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.221-224
    • /
    • 2002
  • Nucleophilic addition reactions of benzylamines (BA; $XC_6H_4CH_2NH_2$) to ethyl-${\alpha}$-cyanocinnamates (ECC;$YC_6H_4CH$=C(CN)COOEt) have been investigated in acetonitrile at $30.0^{\circ}C$. The rate is first order with respect to BA and ECC. The rate is slower than that expected from the additive effect of ${\sigma}^-$ or $R^-$ for the activating groups (CN and COOEt). Natural. bond orbital ${\pi}^{\ast}_{c=c}$ calculations show that the contribution of COOEt group may not be fully effective despite the coplanar molecular structure. The selectivity parameters including the cross-interaction constant (${\rho}_{xy}$ = -0.22) indicate that the addition occurs in a single step. The kinetic isotope effects ($k_H/k_D$=2.5-2.8) involving deuterated BA ($XC_6H_4CH_2ND_2$) nucleophiles and activation parameters (${\Delta}H^{\neq}=4{\sim}6\;kcal\;mol^{-1};{\Delta}S^{\neq}=-45{\sim}-52\;e.u.$) suggest a cyclic transition state in which N-$C_{\alpha}$ and H-$C_{\beta}$ bonds are formed concurrently.

Kinetics and Mechanism of the Addition of Benzylamines to Benzylidene Meldrum's Acids in Acetonitrile

  • Oh, Hyuck-Keun;Kim, Tae-Soo;Lee, Hai-Whang;Lee, Ik-Choon
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.2
    • /
    • pp.193-196
    • /
    • 2003
  • Nucleophilic addition reactions of benzylamines $(XC_6H_4CH_2NH_2)$ to benzylidene Meldrum's acids (BMA; $YC_6H_4CH=C(COO)_2C(CH_3)_2$) have been investigated in acetonitrile at 20.0 ℃. The rates of addition are greatly enhanced due to the abnormally high acidity of Meldrum's acid. The magnitudes of the Hammett $({\rho}_X\;and\;{\rho}_Y)$ and Bronsted $({\rho}_X$)$ coefficients are rather small suggesting an early transition state. The sign and magnitude of the cross-interaction constant, ${\rho}_{XY}$ (= -0.33), and kinetic isotope effects $(k_H/k_D\;{\stackrel}{~}{=}\;1.5-1.7)$ involving deuterated benzylamine nucleophilies $(XC_6H_4CH_2ND_2)$ are indicative of hydrogen-bonded cyclic transition state. The activation parameters, ${\Delta}H^{\neq}\;{\stackrel}{~}{=}\;4\;kcal\;mol^{-1}\;and\;{\Delta}S^{\neq}\;{\stackrel}{~}{=}\;-37\;e.u.$, are also in line with the proposed mechanism.

Kinetic Studies on the Nucleophilic Addition of Cysteine to 3,4-Methylenedioxyphenylmethylene Malononitrile (3,4-Methylenedioxyphenylmethylene Malononitrile에 대한 Cysteine의 친핵성 첨가반응에 관한 반응속도론적 연구)

  • Tae-Rin Kim;Dong-Suk Rho;Young-Haeng Lee
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.6
    • /
    • pp.407-413
    • /
    • 1982
  • The rate constants of the nucleophilic addition of cysteine to 3,4-methylenedioxyphenylmethylene malononitrile were determined by UV Spectrophotometry and a rate equation which can be applied over wide pH range was obtained. On the basis of rate equation, it may be concluded that the rate constants were dependent upon only the concentration of hydroxide ion above pH 9.0, however, below pH 6.0, the reaction were initiated by the addition of neutral cysteine molecule to carbon-carbon double bond and at pH 7.0~9.0, the addition of a neutral cysteine molecule and it's anion occurred competitively.

  • PDF

Synthesis of Octahydro-2,3-dioxo-cyclopenta[b]pyrrole-3a-carboxylates by Nucleophilic Addition to N-Acyliminium (N-Acyliminium에의 친핵성 부가에 의한 Octahydro-2,3-dioxo-cyclopenta[b]pyrrole-3a-carboxylates의 합성)

  • Seo Won-Jun;Chang-hee Jung;Seung-Ju Choi;Young-Kyu Park;Tae-Heung Kim;Sang-Kyu Lee
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.12
    • /
    • pp.908-914
    • /
    • 1994
  • 6a-Hydroxy- and 6a-methoxy-derivatives (1∼6) of octahydro-2,3-dioxo-cyclopenta[b]-pyrrole-3a-carboxylate were synthesized from oxalylation of enamine A, which was prepared from condensation of five-membered cyclic ${\beta}$-keto ester and phenylalkylamine, followed by addition of water or methanol. The formation of heterocyclic ring was assumed to occur by the way of unstable N-acyliminium (B). Stable adduct C (1∼6) was obtained from nucleophilic addition to the endo-ene type pyrrolinium B.

  • PDF

Kinetic and Mechanism of the Addition of Benzylamines to α-Phenyl-β-thiophenylacrylonitriles in Acetonitrile

  • Hwang, Jae-young;Yang, Ki-yull;Koo, In-Sun;Sung, Dae-Dong;Lee, Ik-choon
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.733-738
    • /
    • 2006
  • Nucleophilic addition reactions of p-substitutedbenzylamines $(XC _6H_4CH _2NH _2)$ to $\alpha$-phenyl-$\beta$-thiophenyl-acrylonitriles ($YC _4SH _2CH=C(CN)C_6H_4$Y') have been studied in acetonitrile at 25.0, 30.0, and 35.0 ${^{\circ}C}$. The reactions take place in single step in which the $C_\beta$ -N bond formation and proton transfer to $C_\alpha$ of $\alpha$-phenyl-$\beta$-thiophenylacrylonitriles occur concurrently with four-membered cyclic transition structure. These mechanistic conclusions are drawn based on (i) the large negative $\rho$x and large positive $\rho$Y' values and also large magnitude of $\rho$X, (ii) the negative sign and large magnitude of the cross-interaction constants ($\rho$XY), (iii) the normal kinetic isotope effects ($k_H/k_D$ > 1.0), and (iv) relatively low $\Delta H ^\neq$ and large negative $\Delta S ^\neq$ values.