• Title/Summary/Keyword: nucleophilic addition

Search Result 138, Processing Time 0.029 seconds

Preparation of Azidated Polybutadiene(Az-PBD)/Ethylene-Vinyl Acetate Copolymer(EVA) Blends for the Application of Energetic Thermoplastic Elastomer (에너지함유 열가소성탄성체 적용을 위한 아지드화 폴리부타디엔/에틸렌-비닐아세테이트 공중합체 블렌드 제조)

  • Yoon, Sang Won;Choi, Myung Chan;Chang, Young-Wook;Noh, Si-Tae;Kwon, Soon Kil
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.282-288
    • /
    • 2015
  • A new energetic thermoplastic elastomer based on the azidated polybutadiene(Az-PBD)/ethylene vinyl acetate copolymer (EVA) blends was prepared, and structure and properties of the blends were invetigated by SEM, DSC, DMA, tensile testing and combustion test. The Az-PBD was synthesized via a two-step process involving the addition reaction of commercially available 1,2-PBD with $Br_2$ and subsequent nucleophilic substitution reaction of the brominated PBD with $NaN_3$. EVA/Az-PBD with 90/10, 80/20, 70/30 (wt/wt) was prepared by a solution blending. SEM, DSC, and DMA results revealed that the blends are partially compatible and Az-PBD is dispersed in continuous EVA matrix. Tensile test showed that modulus and tension set increased while elongation-at-break of the blends decreased with increasing Az-PBD content in the blends, but all the blends showed a elongation at break as high as 700% and a tension set of less than 5%, indicating that the blends are typically elastomeric. Combustion test showed that, with increasing Az-PBD content in the blend, higher energy can be released.

Structure and Reactivity of Alkylchloroformates. MO Theoretical Interpretations on Halide Exchange Reaction (염화 포름산 알킬의 구조와 반응성. 할로겐화 이온 교환반응에 대한 분자궤도론적 고찰)

  • Lee, Bon Su;Lee, Ik Choon
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.4
    • /
    • pp.223-238
    • /
    • 1974
  • CNDO/2 MO theoretical studies and kinetic studies of halide exchange reactions for alkylchloroformates have been carried out in order to investigate structure-reactivity relationship of alkylchloroformates. From the result of energetics, it was concluded that the most stable configuration of alkylchloroformate is that in which alkyl group and chlorine are trans to each other, and that the hindered rotation about the bond between the carbonyl carbon and alkoxy-oxygen bond is attributed to the ${\pi}-$electron delocalization. It has been found that the large charge separation is due to -M effect of carbonyl and alkoxy oxygens and-I effect of chlorine. The order of rates in solvents studied was $(CH_3)_2 > CO > CH_3CN{\gg}MeOH.$$I^->Br^->Cl^-$ in protic solvent, and of Cl^->Br^- >I^-$ in dipolar aprotic solvents. Alkyl group contribution has the decreasing order of $CH_3-> C_2H-{\gg}i-C_3H_7-.$ The solvent effect has been interpreted on the basis of initial and final state contribution. A transition state model has been suggested, and it has been proposed that the most favorable mechanism is the addition-elimination. From the results of activation parameters and electronic properties, an energy profile has been proposed. Structural factors determining reactivities of alkylchloroformates have been shown to be charge, energy level of ${\alpha}^*LUMO$ to C-Cl bond and ${\alpha}^{\ast} $antibonding strength with respect to C-Cl bond in this MO. Charge and polarizability of nucleophile, and the interaction of these effects with solvent structures are also found to be important.

  • PDF

Polyacetylene Compounds from Panax ginseng C.A. Meyer (인삼의 Polyacetylene 화합물)

  • Shim Sang Chul;Chang Suk-Ku
    • Proceedings of the Ginseng society Conference
    • /
    • 1988.08a
    • /
    • pp.122-128
    • /
    • 1988
  • Several major polyacetylene compounds were isolated from the petroleum-ether fraction of fresh Korean ginseng roots through solvent fractionation. partition and silica gel column chromatography. Further separation of acetylenic compounds was accomplished by bonded normal phase HPLC utilizing a moderately nonpolar microparticulate column. The preparative separation for the various spectral measurements was carried out by low pressure preparative liquid chromatography. The chemical structure of these polyacetylenes separated was determined by UV. IR/FTIR. $^{1}H$ NMR. mass spectral and elemental analysis. These are identified to be heptadeca-1-en-4.6-diyn-3.9.l0.-triol [1] heptadeca-1.9-dien-4.6-diyn-3-ol. heptadeca-1.8-dien-4.6-diyn-3.10-diol and the 4th was denatured polyacetylene. heptadeca-1.4-dien-6.8-diyn-3.10-diol. Two different p-substituted benzoates of panaxynol were synthesized for the determination of exciton chirality. The circular dichroism spectra in the UV region show that panaxynol p-bromobenzoate and p-dimethyl-aminobenzoate constitute negative exciton chirality [2]. Isolated major polyacetylene compounds were irradiated in aerated solution with 300 nm UV light to obtain the oxidized product at the allylic alcohol center to corresponding carbonyl compounds such as heptadeca-1-en-4.6-diyn-9.10-diol-3-one and heptadeca-1.9-dien-4.6-diyn-3-one. These photooxidation compounds have en-on-diyne chromophore and undergo nucleophilic addition reaction with methanol to yield ${\beta}-methoxy$ carbonyl compounds such as heptadeca-9-en-4.6-diyn-1-methoxy-3-one and heptadeca-4.6-diyn-1-methoxy-9.10-diol-3-one.

  • PDF

Conformation and Reactivity of Herbicidal Benzenesulfonyl urea Compounds (제초성 Benzenesulfonyl urea계 화합물의 형태와 반응성)

  • Yu, Seong-Jae;Lee, Sang-Ho;Ko, Young-Kwan;Sung, Nak-Do
    • Applied Biological Chemistry
    • /
    • v.39 no.3
    • /
    • pp.235-240
    • /
    • 1996
  • The most stable stereo conformer in non substituted benzenesulfonyl urea, 1 was the II-keto form, which the molecule was intramolecular associated(H-bond) coformer between imide group and N atom on the Pyrimidine ring. The hydrolytic degradation of 2 derivatives were proceeds by nucleophilic addition reaction(p<0) with orbital controlled intermolecular interaction between LUMO with electron donating$(\sigma<0)$ groups of 2 and HOMO of water molecule. N-(4,6-disub. pyrimid ine-2-yl)aminocarbonyl-2-(1,1-dimethoxy-2-fluoro)ethylbenze nesulfonamides,3 and N-(4,6-disub. triazine-2-yl)aminocarbonyl-2-(1,1-d imethoxy-2-fluoro)ethylbenzenesulfonamides,4 we re synthesized and their herbicidal activities in vivo against bulrush (Scirpus juncoides.) were measured by the pot test under the paddy conditions And the structure activity relationships(SAR) were analyzed by the multiple regression technique. The results of the SAR suggested that the 3 and 4 derivatives indicated dependent on the hydrophobicity of the 4,6-disubstituents and the heterocyclo group, where the optimal value $((log\;P)_{opt.}=0.89)$ of hydrophobicity was 0.89. The pyrimidine substituents, 3 showed higher herbicidal activity than the triazine substituents, 4. Among them, 4,6-dimethoxypyrimidine substituent, 3a showed the best herbicidal activity.

  • PDF

On the Decomposition of Dimethyl-2, 2-dichlorovinylphosphate (Dimethyl-2, 2-dichlorovinylphosphate의 분해반응에 관한 연구)

  • Sung, Nack-Do;Park, Seung-Heui
    • Applied Biological Chemistry
    • /
    • v.26 no.2
    • /
    • pp.125-131
    • /
    • 1983
  • Formal net charges, bond populations, atomic orbital coefficients, energy components and conformation of dimethyl-2,2-dichlorovinylphosphate have been studied theoretically by using the CNDO/2 molecular orbital calculation method in attempt to describe the reactivity and the stability of the molecule. From the analysis of rate equation, molecular orbital calculations and identification of the hydrolysis products, 2,2-dichloroacetaldehyde and dimethylphosphoric acid, a mechanism of the hydrolysis of dimethyl-2,2-dichlorovinylphosphate(DDVP) has been proposed. The hydrolysis of DDVP proceeds through the mechanism of nucleophilic addition, typical Micheal reaction in basic media. Therefore, it appears probable that the attack by strong nucleophile, hydroxide ion occurs at the increased positive charge $C_2({\alpha})$ atom of a staggered conformation due to the inductive effect (-)I>(+)R of 2,2-dichlorovinyl, electron-attracting group. And then, the hydrolytic scission involves the $C_2({\alpha})-O_3$, ${\pi}-anti-bonding\;orbital({\pi}^*)$ in the subsequent reaction in aqueous solution.

  • PDF

Kinetics and Mechanism of Alkalie Hydrolysis of Cinnamonitrile (II) (Cinnamonitrile의 알카리 가수분해(加水分解) 반응(反應)메카니즘 (II))

  • Sung, Nack Do;Chung, Woo Jin;Kwon, Ki Sung;Park, Byung Kwan
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.2
    • /
    • pp.354-364
    • /
    • 1983
  • Confonmation of (Z)-cinnamonitrile have been studied by molecular orbital theoretically using extended Huckel theory(EHT) and CNDO/2 molecular orbital calculation methods. The results indicate that the stability of conformation is(Z)-gauch>(Z)-planar. The rate constants for alkalie hydrolysis of cinnamonitrile at pH 7.0-14.0 range have been determined by ultra-violet spectrophotometry in 50% methanol at $25^{\circ}C$ and the following rate equation which can be applied over wide pH range was obtained; $${\therefore}k=({\frac{1.41{\times}10^{-14}+1.21{\times}10^7/[H_3O^+]}{2.65{\times}10^{-7}+1.64/[H_3O^+]})+9.14{\times}10^9/[H_3O^+]$$ The rate equation reveals that, at pH 7.0-10.0, the reaction is initiated by the addition of water molecule to unsaturated cabon-carhon double bond of cinnamonitrile and ${\alpha}C-{\beta}C$ bond scission follow subsequently in neutral and alkalie media. At pH 12.0-14.0, in strong alkalie solution, that so-called Michael type nucleophilic addition that the over-all rate constants is only dependent upon the concentration of hydroxide ion occurs competitively and are very complicated. Hence, the reaction mechanism of alkalie hydrolysis of cinnamonitrile which did not carefully before can be fully explained.

  • PDF

Kinetics and mechanism of hydrolysis of insecticidal buprofezin (살충제 buprofezin의 가수분해 반응 메카니즘)

  • Sung, Nack-Do;Yu, Seong-Jae;Choi, Kyung-Sub;Kwon, Ki-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.1
    • /
    • pp.46-52
    • /
    • 1998
  • The hydrolysis rate of insecticidal buprofezin(IUPAC : tert-butylimino-3-isopropyl-5-phenylperhydro-1,3,5-thiadiazin-4-one) in the range of pH 2.0 and 12.0 have been examined in 15%(v/v) aqueous dioxane at $45^{\circ}C$. The hydrolysis mechanism of buprofezin is proposed from the pH-effect, solvent effect(${\ell}{\gg}m$), thermodynamic parameter(${\Delta}H^{\neq}$=11.12 $Kcal{\cdot}mol^{-1}$ &, ${\Delta}S^{\neq}=5.0e.u.$), rate equation and hydrolysis product, l-isopropyl-3-phenyl urea. General acid catalyzed hydrolysis and specific acid catalyzed($k_{H3O+}$) hydrolysis through $A-S_{E}2$ and A-2(or $A_{AC}2$) reaction mechanism with orbital-control reaction proceed below pH 8.0 and above pH 9.0, the nucleophilic addition-elimination, $Ad_{N}-E$ mechanism via tetrahedral($sp^{3}$) intermediate is initiation by general base catalyzed($k_{H2O}$) reaction. Buprofezin was more stable in alkaline ($k=10^{-8}sec.^{-1}$) than acid solutions from the sigmoid pH-rate profile. And the half-life($t=\frac{1}{2}$) of hydrolysis reaction in neutral aqueous solution(pH 7.0) at $45^{\circ}C$ was about 3 months.

  • PDF

Solution Phase Photolyses of Substituted Diphenyl Ether Herbicides under Simulated Environmental Conditions (모조(模造) 환경조건하(環境條件下)에서의 치환(置換) Diphenyl Ether 제초제(除草劑)의 광분해(光分解)에 관(關)한 연구(硏究))

  • Lee, Jae-Koo
    • Applied Biological Chemistry
    • /
    • v.17 no.3
    • /
    • pp.149-176
    • /
    • 1974
  • Eight substituted diphenyl ether herbicides and some of their photoproducts were studied in terms of solution phase photolysis under simulated environmental conditions by using a Rayonet photochemical reactor. The test compounds absorbed sufficient light energy at the wavelength of 300 nm to undergo various photoreactions. All the photoproducts were confirmed by means of tlc, glc, ir, ms, and/or nmr spectrometry. The results obtained are summarized as follows: Solution phase photolysis of C-6989: An exceedingly large amount of p-nitrophenol formed strongly indicates the readiness of the ether linkage cleavage of this compound as the main reaction in all solvents used. Photoreduction of nitro to amino group(s) and photooxidation of trifluoromethyl to carboxyl group were recognized as minor reactions. Aqueous photolysis of p-nitrophenol: Quinone(0.28%), hydroquinone (0.66%), and p-aminophenol (0.42%) were confirmed as photoproducts, in addition to a relatively small amount of an unknown compound. The mechanisms of formation of these products were proposed to be the nitro-nitrite rearrangement via $n{\rightarrow}{\pi}^*$ excitation and the photoreduction through hydrogen abstractions by radicals, respectively. Solution phase photolysis of Nitrofen: Photochemical reduction leading to the p-amino derivative was the main reaction in n-hexane. In aqueous solution, the photoreduction of nitro to amino group and hydroxylation predominated over the ether linkage cleavage. Nucleophilic displacement of the nitro group by hydroxide ion and replacement of chlorine substituents by hydroxyl group or, to a lesser extent, hydrogen were also observed as minor reactoins. Solution phase photolysis of MO-338: Photoreduction of the nitro to amino group was marked in the n-hexane solution photolysis. In the aqueous solution, photoreduction of the nitro substituent and hydroxylation were the main reactions with replacement of chlorine substituents by the hydroxyl group and hydrogen, and cleavage of the ether linkage as minor reactions. Photolyses of MC-4379, MC-3761, MC-5127, MC-6063, and MC-7181 in n-hexane and cyclohexane: Photoreduction of the nitro group leading to the corresponding amino derivative and replacement of one of the halogen substituents by hydrogen from the solvent used were the key reactions in each compound. Aqueous photolysis of MC-4379: Cleavage of the ether linkage, replacement of the carboxymethyl by hydroxyl group, hydroxylation, and replacement of the nitro by hydroxy group were prominent with photoreduction and dechlorination as minor reactions. Aqueous photolysis of MC-3761: Cleavage of the ether linkage, replacement of the carboxymethyl by hydroxyl group, and photoreduction followed by hydroxylation were the main reactions. Aqueous photolysis of MC-5127: Replacement of carboxyethyl by hydrogen was predominant with ether linkage cleavage, photoreduction, and dechlorination as minor reactions. It was obvious that the decarboxyethylation proceeded more readily than decarboxymethylation occurring in the other compounds. Aqueous photolysis of MC-6063: Cleavage of the ether linkage and photodechlorination were the main reactions. Aqueous photolysis of MC-7181: Replacement of the carboxymethyl group by hydrogen and monodechlorination were the remarkable reactions. Cleavage of the ether linkage and hydroxylation were thought to be the minor reactions. Aqueous photolysis of 3-carboxymethyl-4-nitrophenol: The photo-induced Fries rearrangement common to aromatic esters did not appear to occur in the carboxymethyl group of this type of compound. Conversion of nitro to nitroso group was the main reaction.

  • PDF