• Title/Summary/Keyword: nuclear steam generators

Search Result 121, Processing Time 0.027 seconds

Burst Behavior of Wear Scar of Steam Generators Tubes (증기발생기 전열관 마모 파열 거동)

  • Kim, Hong-deok
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.2
    • /
    • pp.1-8
    • /
    • 2010
  • Nuclear steam generator tubes have experienced wear degradation at tube support structure. Morphology of wear scar was analyzed by using eddy current signal. A burst test facility for steam generator tubes was established and tubes with 3 types of defects were tested. The burst test results show that the depth of wear scar is the main factor influencing the burst pressure of tubes, meanwhile, both the longitudinal length and the angle also have effect on the burst pressure. Based on test results, the burst pressure equation for wear degradation was proposed.

  • PDF

Impingement wastage experiment with SUS 316 in a printed circuit steam generator

  • Siwon Seo;Bowon Hwang;Sangji Kim;Jaeyoung Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.257-264
    • /
    • 2024
  • The sodium cooled fast reactor (SFR) is one of the Gen-IV reactors with the most operating experience accumulated. Although the technology level is the most mature among the Gen-IV reactors, there is still a safety problem that has not been solved, which is the sodium-water reaction. Since sodium and water are separated only by a heat transfer tube with a thickness of only a few mm, there is inherently a risk of a sodium-water reaction (SWR) accident in the SFR. In this study, it is attempted to quantitatively evaluate the resistance of SWR accidents by replacing the shell and tube steam generator with printed circuit steam generator (PCSG) as a method to mitigate the SWR accident. To do this, a CATS-S (Compact Accident Tolerance Steam Generator-SWR) facility was designed and built. And for the quantitative evaluation of accident resistance, a methodology for measuring the impingement wastage rate was established. As a result of this research, the impingement wastage rate caused by SWR generated in a PCSG was measured first time. It was confirmed that the impingement wastage phenomenon was suppressed in the PCSG, and the accident resistance was higher than that of the SWR through comparison with the experimental results performed in the existing shell and tube steam generator. In conclusion, a PCSG is more resistant to impingement wastage as a result of the SWR accident than existing shell and tube steam generators, and it is estimated that a PCSG can mitigate SWR accidents, an inherent problem of SFR.

Degradation analysis of horizontal steam generator tube bundles through crack growth due to two-phase flow induced vibration

  • Amir Hossein Kamalinia;Ataollah Rabiee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4561-4569
    • /
    • 2023
  • A correct understanding of vibration-based degradation is crucial from the standpoint of maintenance for Steam Generators (SG) as crucial mechanical equipment in nuclear power plants. This study has established a novel approach to developing a model for investigating tube bundle degradation according to crack growth caused by two-phase Flow-Induced Vibration (FIV). An important step in the approach is to calculate the two-phase flow field parameters between the SG tube bundles in various zones using the porous media model to determine the velocity and vapor volume fraction. Afterward, to determine the vibration properties of the tube bundles, the Fluid-Solid Interaction (FSI) analysis is performed in eighteen thermal-hydraulic zones. Tube bundle degradation based on crack growth using the sixteen most probable initial cracks and within each SG thermal-hydraulic zone is performed to calculate useful lifetime. Large Eddy Simulation (LES) model, Paris law, and Wiener process model are considered to model the turbulent crossflow around the tube bundles, simulation of elliptical crack growth due to the vibration characteristics, and estimation of SG tube bundles degradation, respectively. The analysis shows that the tube deforms most noticeably in the zone with the highest velocity. As a result, cracks propagate more quickly in the tube with a higher height. In all simulations based on different initial crack sizes, it was observed that zone 16 experiences the greatest deformation and, subsequently, the fastest degradation, with a velocity and vapor volume fraction of 0.5 m/s and 0.4, respectively.

The Effect of TiN and CrN Coatings on the Fretting Wear of Tubes against Supports in a Nuclear Steam Generators

  • Park, Dong-Shin;Park, Jung-Min;Kim, Jin-Seon;Lee, Young-Ze
    • KSTLE International Journal
    • /
    • v.10 no.1_2
    • /
    • pp.33-36
    • /
    • 2009
  • The nuclear steam generator is composed of a bundle of tubes. The length of these tubes is very long, but their diameter is small. Fluid exists inside of the steam generator and its flow causes vibration, therefore these tubes are supported by anti-vibration bars. The wear damage due to the vibration is known as fretting wear, which should be minimized to ensure the safety of the plants. Research needs to be done about decreasing the amount of fretting wear. Hard coatings have proven to be very effective in reducing the amount of wear. The commercial coatings of TiN and CrN have excellent wear resistance and are used to protect the Inconel tube from fretting wear. The tube-on-flat type tester was used for conducting the fretting wear tests. It was found that the wear amounts of the coated tubes decreased depending on the coating thickness. CrN was found to be very effective in reducing the wear, while the wear amounts were dependent on the coating thickness in the case of TiN and a thick coating of TiN was very effective on wear resistance.

A Study on the Fluid Mixing Analysis for Proving Shell Wall Thinning of a Feedwater Heater (급수가열기 동체 감육 현상 규명을 위한 유동해석 연구)

  • Kim, Kyung-Hoon;Hwang, Kyeong-Mo;Kim, Sang-Nyung
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.24-30
    • /
    • 2004
  • Feedwater flowing tube side of number 5 high pressure feedwatrr heaters was heated by extracting steam from high pressure turbine and draining water from moisture separators and number 6 high pressure feedwater heaters and supplied into steam generators. Because the extracting steam from the high pressure turbine is two phase fluid of high temperature, high pressure, and high speed and flows to inverse direction after impinging to impingement baffle. the shell wall of the number 5 high pressure feedwater heater may be affected by flow accelerated corrosion. On May 14, 1999, Point Beach Nuclear Plant (PBNP) with operating at full power experienced a steam leak from rupture of shell side of number 4B feedwater heater. Also, d domestic nuclear power plant experienced a severe wall thinning of shell side of number 5A and 5B feedwater heaters. This paper describes the fluid mixing analysis study using PHOENICS code in order to get at the root of the shell wall thinning of the feedwater heaters. The sections included in the fluid mixing analysis model are around the number 5h feedwater heater shell including the extracting pipeline. To identify the relation between the local velocities and wall thinning. the local velocities according to the analysis results were compared with the distribution of the shell wall thickness by ultrasonic test.

  • PDF

Evaluation of the Probability of Detection Surface for ODSCC in Steam Generator Tubes Using Multivariate Logistic Regression (다변량 로지스틱 회귀분석을 이용한 증기발생기 전열관 ODSCC의 POD곡면 분석)

  • Lee, Jae-Bong;Park, Jai-Hak;Kim, Hong-Deok;Chung, Han-Sub
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.250-255
    • /
    • 2007
  • Steam generator tubes play an important role in safety because they constitute one of the primary barriers between the radioactive and non-radioactive sides of the nuclear power plant. For this reason, the integrity of the tubes is essential in minimizing the leakage possibility of radioactive water. The integrity of the tubes is evaluated based on NDE (non-destructive evaluation) inspection results. Especially ECT (eddy current test) method is usually used for detecting the flaws in steam generator tubes. However, detection capacity of the NDE is not perfect and all of the "real flaws" which actually existing in steam generator tunes is not known by NDE results. Therefore reliability of NDE system is one of the essential parts in assessing the integrity of steam generators. In this study POD (probability of detection) of ECT system for ODSCC in steam generator tubes is evaluated using multivariate logistic regression. The cracked tube specimens are made using the withdrawn steam generator tubes. Therefore the cracks are not artificial but real. Using the multivariate logistic regression method, continuous POD surfaces are evaluated from hit (detection) and miss (no detection) binary data obtained from destructive and non-destructive evaluation of the cracked tubes. Length and depth of cracks are considered in multivariate logistic regression and their effects on detection capacity are evaluated.

  • PDF

Development of a thermal-hydraulic analysis code for once-through steam generators using straight tubes for SMRs (일체형 원자로용 관류식 직관형 증기발생기 열수력 해석 코드 개발)

  • Park, Youngjae;Kim, Iljin;Kang, Kyungjun;Kang, Hanok;Kim, Youngin;Kim, Hyungdae
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.91-102
    • /
    • 2015
  • A thermal-hydraulic design and performance analysis computer code for a once-through steam generator using straight tubes is developed. To benchmark the developed physical models and computer code, an once-through steam generator developed by other designer is simulated and the calculated results are compared with the design data. Also, the same steam generator is analyzed with the best-estimate thermal-hydraulic system code, MARS, for the code-to-code validation. The overall characteristics of heat transfer area, pressure and temperature distributions calculated by the developed code show general agreements with the published design data as well as the analysis results of MARS. It is demonstrated that the developed code can be utilized for diverse purposes, such as, sensitivity analyses and optimum thermal design of a once-through steam generator.

Automated Analysis Technique Developed for Detection of ODSCC on the Tubes of OPR1000 Steam Generator

  • Kim, In Chul;Nam, Min Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.6
    • /
    • pp.519-523
    • /
    • 2013
  • A steam generator (SG) tube is an important component of a nuclear power plant (NPP). It works as a pressure boundary between the primary and secondary systems. The integrity of a SG tube can be assessed by an eddy current test every outage. The eddy current technique(adopting a bobbin probe) is currently the main technique used to assess the integrity of the tubing of a steam generator. An eddy current signal analyst for steam generator tubes continuously analyzes data over a given period of time. However, there are possibilities that the analyst conducting the test may get tired and cause mistakes, such as: missing indications or not being able to separate a true defect signal from one that is more complicated. This error could lead to confusion and an improper interpretation of the signal analysis. In order to avoid these possibilities, many countries of opted for automated analyses. Axial ODSCC (outside diameter stress corrosion cracking) defects on the tubes of OPR1000 steam generators have been found on the tube that are in contract with tube support plates. In this study, automated analysis software called CDS (computer data screening) made by Zetec was used. This paper will discuss the results of introducing an automated analysis system for an axial ODSCC on the tubes of an OPR1000 steam generator.

RECENT IMPROVEMENTS IN THE CUPID CODE FOR A MULTI-DIMENSIONAL TWO-PHASE FLOW ANALYSIS OF NUCLEAR REACTOR COMPONENTS

  • Yoon, Han Young;Lee, Jae Ryong;Kim, Hyungrae;Park, Ik Kyu;Song, Chul-Hwa;Cho, Hyoung Kyu;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.655-666
    • /
    • 2014
  • The CUPID code has been developed at KAERI for a transient, three-dimensional analysis of a two-phase flow in light water nuclear reactor components. It can provide both a component-scale and a CFD-scale simulation by using a porous media or an open media model for a two-phase flow. In this paper, recent advances in the CUPID code are presented in three sections. First, the domain decomposition parallel method implemented in the CUPID code is described with the parallel efficiency test for multiple processors. Then, the coupling of CUPID-MARS via heat structure is introduced, where CUPID has been coupled with a system-scale thermal-hydraulics code, MARS, through the heat structure. The coupled code has been applied to a multi-scale thermal-hydraulic analysis of a pool mixing test. Finally, CUPID-SG is developed for analyzing two-phase flows in PWR steam generators. Physical models and validation results of CUPID-SG are discussed.

Thermal-Hydraulic Analysis of Kori Unit-1 Steam Generator Using ATHOS3 Code (ATHOS3 코드에 의한 고리1호기 증기발생기 열유동해석)

  • Choi Seok-Ki;Nam Ho-Yun;Kim Eui-Kwang;Kim Hyung-Nam;Jang Ki-Sang;Hong Sung-Yull
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.106-111
    • /
    • 2001
  • This paper presents the numerical methodology of ATHOS3 code for thermal hydraulic analysis of Pressurized Water Reactor (PWR) steam generators. Topics include porous media approach, governing equations, physical models and correlations for solid-to-fluid interaction and heat transfer, and numerical solution scheme. The ATHOS3 code is applied to the thermal hydraulic analysis of steam generator in the Korea Kori Unit-1 nuclear power plant and the computed results are presented.

  • PDF