• 제목/요약/키워드: nuclear receptor coactivator 6

검색결과 10건 처리시간 0.024초

Regulation of Hepatic Gluconeogenesis by Nuclear Receptor Coactivator 6

  • Oh, Gyun-Sik;Kim, Si-Ryong;Lee, Eun-Sook;Yoon, Jin;Shin, Min-Kyung;Ryu, Hyeon Kyoung;Kim, Dong Seop;Kim, Seung-Whan
    • Molecules and Cells
    • /
    • 제45권4호
    • /
    • pp.180-192
    • /
    • 2022
  • Nuclear receptor coactivator 6 (NCOA6) is a transcriptional coactivator of nuclear receptors and other transcription factors. A general Ncoa6 knockout mouse was previously shown to be embryonic lethal, but we here generated liver-specific Ncoa6 knockout (Ncoa6 LKO) mice to investigate the metabolic function of NCOA6 in the liver. These Ncoa6 LKO mice exhibited similar blood glucose and insulin levels to wild type but showed improvements in glucose tolerance, insulin sensitivity, and pyruvate tolerance. The decrease in glucose production from pyruvate in these LKO mice was consistent with the abrogation of the fasting-stimulated induction of gluconeogenic genes, phosphoenolpyruvate carboxykinase 1 (Pck1) and glucose-6-phosphatase (G6pc). The forskolin-stimulated inductions of Pck1 and G6pc were also dramatically reduced in primary hepatocytes isolated from Ncoa6 LKO mice, whereas the expression levels of other gluconeogenic gene regulators, including cAMP response element binding protein (Creb), forkhead box protein O1 and peroxisome proliferator-activated receptor γ coactivator 1α, were unaltered in the LKO mouse livers. CREB phosphorylation via fasting or forskolin stimulation was normal in the livers and primary hepatocytes of the LKO mice. Notably, it was observed that CREB interacts with NCOA6. The transcriptional activity of CREB was found to be enhanced by NCOA6 in the context of Pck1 and G6pc promoters. NCOA6-dependent augmentation was abolished in cAMP response element (CRE) mutant promoters of the Pck1 and G6pc genes. Our present results suggest that NCOA6 regulates hepatic gluconeogenesis by modulating glucagon/cAMP-dependent gluconeogenic gene transcription through an interaction with CREB.

Steroid Receptor Coactivator-3 Promotes Bladder Cancer Through Upregulation of CXCR4

  • Zhang, Yu;Wang, Ji-Hong;Liu, Bin;Qu, Ping-Bao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권6호
    • /
    • pp.3847-3850
    • /
    • 2013
  • The three homologous members of the p160 SRC family (SRC-1, SRC-2 and SRC-3) mediate the transcriptional functions of nuclear receptors and other transcription factors, and are the most studied of all the transcriptional co-activators. Recent work has indicated that the SRC-3 gene is subject to amplification and overexpression in various human cancers. Some of the molecular mechanisms responsible for SRC overexpression, along with the mechanisms by which SRC-3 promotes breast and prostate cancer cell proliferation and survival, have been identified. However, the function of SRC-3 in bladder cancer remains poorly understood. In the present study, our results indicate that overexpression of SRC-3 promotes bladder cancer cell proliferation whereas knockdown of SRC-3 results in inhibition. At the molecular level, we further established that CXCR4 is a transcriptional target of SRC-3. Therefore, our study first identified that SRC-3 plays a critical role in the bladder cancer, which may be a target beneficial for its prevention and treatment.

Resveratrol promotes mitochondrial energy metabolism in exercise-induced fatigued rats

  • Xujia Lou;Yulong Hu;Rong Ruan;Qiguan Jin
    • Nutrition Research and Practice
    • /
    • 제17권4호
    • /
    • pp.660-669
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: To investigate the effect and regulatory mechanism of resveratrol supplementation on the mitochondrial energy metabolism of rats with exercise-induced fatigue. MATERIALS/METHODS: Forty-eight Sprague-Dawley male rats were divided randomly into a blank control group (C), resveratrol group (R), exercise group (E), and exercise and resveratrol group (ER), with 12 rats in each group. Group ER and group E performed 6-wk swimming training with 5% wt-bearing, 60 min each time, 6 days a wk. Group ER was given resveratrol 50 mg/kg by gavage one hour after exercise; group R was only given resveratrol 50 mg/kg by gavage; group C and group E were fed normally. The same volume of solvent was given by gavage every day. RESULTS: Resveratrol supplementation could reduce the plasma blood urea nitrogen content, creatine kinase activity, and malondialdehyde content in the skeletal muscle, increase the total superoxide dismutase activity in the skeletal muscle, and improve the fatigue state. Resveratrol supplementation could improve the activities of Ca2+-Mg2+-ATPase, Na+-K+-ATPase, succinate dehydrogenase, and citrate synthase in the skeletal muscle. Furthermore, resveratrol supplementation could up-regulate the sirtuin 1 (SIRT1)-proliferator-activated receptor gamma coactivator-1α (PGC-1α)-nuclear respiratory factor 1 pathway. CONCLUSIONS: Resveratrol supplementation could promote mitochondrial biosynthesis via the SIRT1/PGC-1α pathway, increase the activity of the mitochondrial energy metabolism-related enzymes, improve the antioxidant capacity of the body, and promote recovery from exercise-induced fatigue.

Gynostemma pentaphyllum extract and its active component gypenoside L improve the exercise performance of treadmill-trained mice

  • Kim, Yoon Hee;Jung, Jae In;Jeon, Young Eun;Kim, So Mi;Hong, Su Hee;Kim, Tae Young;Kim, Eun Ji
    • Nutrition Research and Practice
    • /
    • 제16권3호
    • /
    • pp.298-313
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: The effectiveness of natural compounds in improving athletic ability has attracted attention in both sports and research. Gynostemma pentaphyllum (Thunb.) leaves are used to make traditional herbal medicines in Asia. The active components of G. pentaphyllum, dammarane saponins, or gypenosides, possess a range of biological activities. On the other hand, the anti-fatigue effects from G. pentaphyllum extract (GPE) and its effective compound, gypenoside L (GL), remain to be determined. MATERIALS/METHODS: This study examined the effects of GPE on fatigue and exercise performance in ICR mice. GPE was administered orally to mice for 6 weeks, with or without treadmill training. The biochemical analysis in serum, glycogen content, mRNA, and protein expressions of the liver and muscle were analyzed. RESULTS: The ExGPE (exercise with 300 mg/kg body weight/day of GPE) mice decreased the fat mass percentage significantly compared to the ExC mice, while the ExGPE showed the greatest lean mass percentage compared to the ExC group. The administration of GPE improved the exercise endurance and capacity in treadmill-trained mice, increased glucose and triglycerides, and decreased the serum creatine kinase and lactate levels after intensive exercise. The muscle glycogen levels were higher in the ExGPE group than the ExC group. GPE increased the level of mitochondrial biogenesis by enhancing the phosphorylation of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) protein and the mRNA expression of nuclear respiratory factor 1, mitochondrial DNA, peroxisome proliferator-activated receptor-δ, superoxide dismutase 2, and by decreasing the lactate dehydrogenase B level in the soleus muscle (SOL). GPE also improved PGC-1α activation in the SOL significantly through AMPK/p38 phosphorylation. CONCLUSIONS: These results showed that GPE supplementation enhances exercise performance and has anti-fatigue activity. In addition, the underlying molecular mechanism was elucidated. Therefore, GPE is a promising candidate for developing functional foods and enhancing the exercise capacity and anti-fatigue activity.

한국산 겨우살이 추출물(KME)의 2형 당뇨 억제 및 근육세포 미토콘드리아 생성 증가 효과 (Inhibition of Type II Diabetes in ob/ob Mice and Enhancement of Mitochodrial Biogenesis in C2C12 Myotubes by Korean Mistletoe Extract)

  • 정회윤;유영춘;김인보;성낙윤;최옥병;최보화;김종배
    • 한국식품영양과학회지
    • /
    • 제44권3호
    • /
    • pp.324-330
    • /
    • 2015
  • 본 연구에서는 C57BL/6J ob/ob 마우스를 이용하여 한국산 겨우살이 냉수 추출물(KME)의 항당뇨 활성을 조사하였다. 50 혹은 100 mg/kg의 KME를 1일 1회씩 경구투여 한 결과 KME 투여 개시 5일 후부터 ob/ob 마우스의 혈당이 유의하게 억제되었으며, 10일 후부터 안정된 억제 효과를 나타내고 대조군에 비해 20% 이상의 혈당강하 효과를 나타내었다. 경구 당부하 실험(OGTT)에서는 KME 경구투여 마우스에서 유효한 당부하 억제 활성이 관찰되었다. 또한 KME 경구 투여는 ob/ob 당뇨 마우스의 혈액 내 총 콜레스테롤과 중성 지질의 농도를 억제하는 것으로 나타났다. 한편 C2C12 근육세포를 이용한 in vitro 실험에서 KME를 처리함으로써 glucose uptake가 현저히 증가하였다. 한편 매우 흥미롭게도 KME를 처리한 C2C12 근육세포에 있어서 미토콘드리아 생성과 산화대사 조절물질인 peroxisome proliferator-activated receptor gamma coactivator 1-${\alpha}(PGC-1{\alpha})$를 비롯하여 glucose transporter type 4(GLUT4), estrogen-related receptor-${\alpha}(ERR-{\alpha})$, nuclear respiratory factor-1(NRF-1) 그리고 mitochondrial transcription factor A(TmfA)와 같은 $PGC-1{\alpha}$ 관련 유전자들의 발현이 증가하는 것으로 확인되었다. 이 결과는 KME가 2형 당뇨에 대한 치료물질로서의 작용을 지니며 이러한 KME의 항당뇨 활성은 미토콘드리아 생성의 조절과 관련 있는 것으로 추정된다.

지구성 운동과 셀레늄 투여가 노화 GK 흰쥐의 미토콘드리아 전사인자 발현에 미치는 영향 (The Effects of Endurance Exercise and Selenium Treatment on Mitochondrial Transcription Factors Expression in Old GK Rats)

  • 김범수
    • 한국발생생물학회지:발생과생식
    • /
    • 제14권2호
    • /
    • pp.75-82
    • /
    • 2010
  • 이 연구는 제2형 당뇨 모델 동물인 Goto-Kakizaki(GK) 흰쥐를 사용하여 운동과 셀레늄 투여가 미토콘드리아 생성과 기능 향상을 조절하는 전사 인자의 발현 변화와 현상학적으로 당뇨의 증상 개선을 유도할 수 있는지를 구명하기 위해 실시하였다. 실험동물은 52주령된 GK 수컷 흰쥐로 24 m/min, 30 min/day, 5 days/week, 총 6주간 트레드밀 런닝을 실시하였다. Sodium selenite(5 umol/kg)는 selenium 집단과 combination 집단에 1주일에 5일씩 6주간 복강에 주입하였다. 운동과 셀레늄 투여는 미토콘드리아의 생성에 관여하는 peroxisome proliferators-activated receptor gamma coactivator-1alpha(PGC-$1{\alpha}$), nuclear respiratory factors(NRF-1), 그리고 mitochondrial transcription factor A(Tfam) 발현을 증가시켰으며, 그 결과로 미토콘드리아량의 지표 단백질인 cytochrome C도 증가를 보였다. 특히, 운동이나 셀레늄의 단독적인 처치보다는 운동과 셀레늄 병행 처치가 미토콘드리아의 생성 및 활성 증가, 그리고 포도당 내성에 긍정적인 효과를 보였다. 따라서, 본 연구에서 수행된 운동과 셀레늄 투여 처치는 당뇨의 개선 효과 및 당뇨 질환과 관련된 미토콘드리아의 기능 향상에 긍정적인 효과를 보이는 것으로 나타났다.

모과추출물의 C2C12 근육세포에서 근분화 및 에너지대사조절인자 발현 증진 효과 연구 (Effects of Chaenomelis Fructus Extract on the regulation of myoblasts differentiation and the expression of biogenetic factors in C2C12 myotubes)

  • 강석용;현선영;권예담;박용기;정효원
    • 대한본초학회지
    • /
    • 제34권6호
    • /
    • pp.99-107
    • /
    • 2019
  • Objective : The present study was conducted to investigate the effects of Chaenomelis Fructus (CF) on the regulation of biogenesis in C2C12 mouse skeletal muscle cells. Methods : C2C12 myoblasts were differentiated into myotubes in 2% horse serum-containing medium for 5 days, and then treated with CF extract at different concentrations for 48 hr. The expression of muscle differentiation markers, myogenin and myosin heavy chain (MHC) and mitochondrial biogenesis-regulating factors, peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC1α), sirtuin1 (Sirt1), nuclear respiratory factor1 (NRF1) and transcription factor A, mitochondrial (TFAM), and the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) were determined in C2C12 myotubes by reverse transcriptase (RT)-polymerase chain reaction (RT-PCR) and western blot, respectively. The cellular glucose levels and total ATP contents were measured by cellular glucose uptake and ATP assays, respectively. Results : Treatment with CF extract (0.01, 0.02, and 0.05 mg/㎖) significantly increased the expression of MHC protein in C2C12 myotubes compared with non-treated cells. CF extract significantly increased the expression of PGC1α and TFAM in the myotubes. Also, CF extract significantly increased glucose uptake levels and ATP contents in the myotubes. Conclusion : CF extract can stimulate C2C12 myoblasts differentiation into myotubes and increase energy production through upregulation of the expression of mitochondrial biogenetic factors in C2C12 mouse skeletal muscle cell. This suggests that CF can help to improve skeletal muscle function with stimulation of the energy metabolism.

Regulation of CYP1A1 and Inflammatory Cytokine by NCOA7 Isoform 4 in Response to Dioxin Induced Airway Inflammation

  • Cho, Sung-Hwan;Park, Shin Young;Lee, Eun Jeong;Cho, Yo Han;Park, Hyun Sun;Hong, Seok-Ho;Kim, Woo Jin
    • Tuberculosis and Respiratory Diseases
    • /
    • 제78권2호
    • /
    • pp.99-105
    • /
    • 2015
  • Background: Aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, binds to a wide variety of synthetic and naturally occurring compounds. AhR is involved in the regulation of inflammatory response during acute and chronic respiratory diseases. We investigated whether nuclear receptor coactivator 7 (NCOA7) could regulate transcriptional levels of AhR target genes and inflammatory cytokines in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-treated human bronchial epithelial cells. This study was based on our previous study that NCOA7 was differentially expressed between normal and chronic obstructive pulmonary disease lung tissues. Methods: BEAS-2B and A549 cells grown under serum-free conditions were treated with or without TCDD (0.15 nM and 6.5 nM) for 24 hours after transfection of pCMV-NCOA7 isoform 4. Expression levels of cytochrome P4501A1 (CYP1A1), IL-6, and IL-8 were measured by quantitative real-time polymerase chain reaction. Results: The transcriptional activities of CYP1A1 and inflammatory cytokines were strongly induced by TCDD treatment in both BEAS-2B and A549 cell lines. The NCOA7 isoform 4 oppositely regulated the transcriptional activities of CYP1A1 and inflammatory cytokines between BEAS-2B and A549 cell lines. Conclusion: Our results suggest that NCOA7 could act as a regulator in the TCDD-AhR signaling pathway with dual roles in normal and abnormal physiological conditions.

미토콘드리아 생합성 촉진을 통한 신선초와 홍삼 복합물의 운동수행능력 증가 효과 (Ashitaba and red ginseng complex stimulates exercise capacity by increasing mitochondrial biogenesis)

  • 김창희;김미보;이승호;김예진;황재관
    • 한국식품과학회지
    • /
    • 제49권6호
    • /
    • pp.685-692
    • /
    • 2017
  • 극심한 스트레스, 서구화된 식습관, 불규칙한 생활리듬 등에 의한 부족한 신체활동은 체력을 약화시키고 비만, 당뇨, 고혈압, 우울증, 근감소증 등을 야기한다. 본 연구에서는 ARC가 운동능력 증진에 미치는 효능을 세포 및 동물실험을 통해 검증하였다. ARC를 처리함에 따라 근육 세포 내에서 p-AMPK와 SIRT1 단백질, PGC-$1{\alpha}$, NFR1, TFAM mRNA 발현양과 미토콘드리아 양이 증가하였다. 세포실험에서 ARC는 RGE와 AE단독으로 처리에 비해 ATP 생성을 더 많이 하였으며, 동물실험에서도 RGE군과 AE군에 비해 ARC군에서 운동수행능력이 더 향상시켰다. 세포 실험과 마찬가지로 ARC는 동물의 근육 조직 내에서 미토콘드리아 생합성에 관련된 유전자의 발현을 증가시켰으며, 젖산 발생량 감소 및 산화스트레스 억제로 인해 운동으로 인한 피로를 쉽게 회복시켰다. 따라서, 신선초와 홍삼 복합물에 대한 인체수준에서 과학적인 증거 및 안전성이 확보될 경우, 운동수행능력 향상을 위한 기능성 소재로서의 산업적인 활용이 확대될 것으로 기대된다.

MiR-144-3p and Its Target Gene β-Amyloid Precursor Protein Regulate 1-Methyl-4-Phenyl-1,2-3,6-Tetrahydropyridine-Induced Mitochondrial Dysfunction

  • Li, Kuo;Zhang, Junling;Ji, Chunxue;Wang, Lixuan
    • Molecules and Cells
    • /
    • 제39권7호
    • /
    • pp.543-549
    • /
    • 2016
  • MicroRNAs (miRNAs) have been reported to be involved in many neurodegenerative diseases. The present study focused on the role of hsa-miR-144-3p in one of the neuro-degenerative diseases, Parkinson's disease (PD). Our study showed a remarkable down-regulation of miR-144-3p expression in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-treated SH-SY5Y cells. MiR-144-3p was then overexpressed and silenced in human SH-SY5Y cells by miRNA-mimics and miRNA-inhibitor transfections, respectively. Furthermore, ${\beta}$-amyloid precursor protein (APP) was identified as a target gene of miR-144-3p via a luciferase reporter assay. We found that miR-144-3p overexpression significantly inhibited the protein expression of APP. Since mitochondrial dysfunction has been shown to be one of the major pathological events in PD, we also focused on the role of miR-144-3p and APP in regulating mitochondrial functions. Our study demonstrated that up-regulation of miR-144-3p increased expression of the key genes involved in maintaining mitochondrial function, including peroxisome proliferator-activated receptor ${\gamma}$ coactivator-$1{\alpha}$(PGC-$1{\alpha}$), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM). Moreover, there was also a significant increase in cellular ATP, cell viability and the relative copy number of mtDNA in the presence of miR-144-3p overexpression. In contrast, miR-144-3p silencing showed opposite effects. We also found that APP overexpression significantly decreased ATP level, cell viability, the relative copy number of mtDNA and the expression of these three genes, which reversed the effects of miR-144-3p overexpression. Taken together, these results show that miR-144-3p plays an important role in maintaining mitochondrial function, and its target gene APP is also involved in this process.