• Title/Summary/Keyword: nuclear problem

Search Result 790, Processing Time 0.029 seconds

The North Korean Nuclear problem and disarmament of Outer Space (북한 핵문제와 우주군축)

  • Noh, Dong-Young
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.32 no.2
    • /
    • pp.219-246
    • /
    • 2017
  • Nuclear issue is a good example showing globalization of the international regime. The history showed nuclear weapons may cause the extinction of human races when the first nuclear bombs fell down to Japan in August, 1945 and people became increasingly eager to achieve peace. Military buildup for national security is a matter of existence in the international society. However, disarmament or arms control to secure international peace and safety which is also the purpose of the Charter of the United Nations may be the most important task for us to realize peace of the mankind. Today, disarmament, together with amicable settlement of international conflicts and collective security system, is an important means to maintain and promote international peace and safety. It might be our permanent task to realize complete disarmament but, as the Preamble of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) expressed general and complete disarmament, the international society has clarified its effort for complete disarmament. Thus, taking a look into the international regime on the nuclear issue and progress related to the nuclear issue in North Korea, the study was intended to introduce the globalization of the nuclear issue, review the international effort for nuclear disarmament based on the concept of the 'common heritage of the mankind' and with respect to the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS) and controls over nuclear weapons, and then evaluate the North Korean nuclear issue, which is in direct relation with South Korea and international laws, in terms of the space law and disarmament acts. The collective security system along with policies to prevent dissemination of nuclear weapons should also be emphasized and implemented to cope with the North Korean nuclear issue.

  • PDF

Coupled Nonlinear Finite Element-Boundary Element Analysis of Nuclear Waste Storage Structures Considering Infinite Boundaries (비선형 유한요소-경계요소 조합에 의한 핵폐기구조체의 무한영역해석)

  • 김문겸;허택녕
    • Computational Structural Engineering
    • /
    • v.6 no.4
    • /
    • pp.89-98
    • /
    • 1993
  • As the construction of nuclear power plants are increased, nuclear wastes disposal has been faced as a serious problem. If nuclear wastes are to be buried in the underground stratum, thermo-mechanical behavior of stratum must be analyzed, because high temperature distribution has a significant effect on tunnel and surrounding stratum. In this study, in order to analyze the structural behavior of the underground which is subject to concentrated heat sources, a coupling method of nonlinear finite elements and linear boundary elements is proposed. The nonlinear finite elements (NFE) are applied in the vicinity of nuclear depository where thermo-mechanical stress is concentrated. The boundary elements are also used in infinite domain where linear behavior is expected. Using the similar method as for the problem in mechanical field, the coupled nonlinear finite element-boundary element (NFEBE) is developed. It is found that NFEBE method is more efficient than NFE which considers nonlinearity in the whole domain for the nuclear wastes depository that is expected to exhibit local nonlinearity behavior. The effect of coefficients of the rock mass such as Poisson's ratio, elastic modulus, thermal diffusivity and thermal expansion coefficient is investigated through the developed method. As a result, it is revealed that the displacements around tunnel are largely dependent on the thermal expansion coefficients.

  • PDF

CHAINED COMPUTATIONS USING AN UNSTEADY 3D APPROACH FOR THE DETERMINATION OF THERMAL FATIGUE IN A T-JUNCTION OF A PWR NUCLEAR PLANT

  • Pasutto, Thomas;PENiguel, Christophe;Sakiz, Marc
    • Nuclear Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.147-154
    • /
    • 2006
  • Thermal fatigue of the coolant circuits of PWR plants is a major issue for nuclear safety. The problem is especially accute in mixing zones, like T-junctions, where large differences in water temperature between the two inlets and high levels of turbulence can lead to large temperature fluctuations at the wall. Until recently, studies on the matter had been tackled at EDF using steady methods: the fluid flow was solved with a CFD code using an averaged turbulence model, which led to the knowledge of the mean temperature and temperature variance at each point of the wall. But, being based on averaged quantities, this method could not reproduce the unsteady and 3D effects of the problem, like phase lag in temperature oscillations between two points, which can generate important stresses. Benefiting from advances in computer power and turbulence modelling, a new methodology is now applied, that allows to take these effects into account. The CFD tool Code_Saturne, developped at EDF, is used to solve the fluid flow using an unsteady L.E.S. approach. It is coupled with the thermal code Syrthes, which propagates the temperature fluctuations into the wall thickness. The instantaneous temperature field inside the wall can then be extracted and used for structure mechanics computations (mainly with EDF thermomechanics tool Code_Aster). The purpose of this paper is to present the application of this methodology to the simulation of a straight T-junction mock-up, similar to the Residual Heat Remover (RHR) junction found in N4 type PWR nuclear plants, and designed to study thermal striping and cracks propagation. The results are generally in good agreement with the measurements; yet, in certain areas of the flow, progress is still needed in L.E.S. modelling and in the treatment of instantaneous heat transfer at the wall.

An Analysis on Performance Degradation of Silicon Photomultipliers over Temperatures Variation for PET-MR Application (PET-MR 시스템에 적용을 위한 실리콘 광증배센서의 온도 변화에 따른 성능 열화 분석)

  • Park, Kyeongjin;Kim, Hyoungtaek;Lim, Kyungtaek;Cho, Minsik;Kim, Giyoon;Cho, Gyuseong
    • Journal of Radiation Industry
    • /
    • v.9 no.3
    • /
    • pp.143-151
    • /
    • 2015
  • A PET-MR system is particularly useful in diagnosing brain diseases. We have developed a prototype positron emission tomography (PET) system which can be inserted into the bore of a whole-body magnetic resonance imaging (MRI) system that enables us to obtain PET and MRI images simultaneously with a reduced cost. Silicon photomultipliers (SiPM) are appropriated as a PET detector at PET/MR system because detectors have a high gain and are insensitive to magnetic fields. Despite of its improved performance compared to that of PMT-based detectors, there is a problem of the photo-peak channel shift which is due to the increase of the temperature inside the ring detector. This problem will occur decreasing sensitivity of the PET and image distortion. In this paper, I quantitative analyze parameters of the KAIST SiPM depending on temperature by experiments. And I designed cooling methods in consideration of the degradation of sensors for correction of the temperature in the PET gantry. According to this research, we expect that distortive images and degradation of the sensitivity will not be occurred with using the above idea to reduce heat even if the PET system operates for a long time.

A Quantitative Team Situation Awareness Measurement Method Considering Technical and Nontechnical Skills of Teams

  • Yim, Ho Bin;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.144-152
    • /
    • 2016
  • Human capabilities, such as technical/nontechnical skills, have begun to be recognized as crucial factors for nuclear safety. One of the most common ways to improve human capabilities in general is training. The nuclear industry has constantly developed and used training as a tool to increase plant efficiency and safety. An integrated training framework was suggested for one of those efforts, especially during simulation training sessions of nuclear power plant operation teams. The developed training evaluation methods are based on measuring the levels of situation awareness of teams in terms of the level of shared confidence and consensus as well as the accuracy of team situation awareness. Verification of the developed methods was conducted by analyzing the training data of real nuclear power plant operation teams. The teams that achieved higher level of shared confidence showed better performance in solving problem situations when coupled with high consensus index values. The accuracy of nuclear power plant operation teams' situation awareness was approximately the same or showed a similar trend as that of senior reactor operators' situation awareness calculated by a situation awareness accuracy index (SAAI). Teams that had higher SAAI values performed better and faster than those that had lower SAAI values.

The Fault Diagnosis using Neural Networks for Nuclear Power Plants (신경망을 이용한 원자력발전소의 주요 고장진단)

  • Kwon, Soon-Il;Lee, Jong-Kyu;Song, Chi-Kwon;Bae, Hyeon;Kim, Sung-Shin
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2723-2725
    • /
    • 2001
  • Nuclear power generations have been developed gradually since 1950. Nowadays, 440 nuclear power generations are taking charge of 16% of electric power production in the world. The most important factor to operate the nuclear power generations is safety. It is not easy way to control nuclear power generations with safety because nuclear power generations are very complicated systems. In the main control room of the nuclear power generations, about 4000 numbers of alarms and monitoring devices are equipped to handle the signals corresponding to operating equipments. Thus, operators have to deal with massive information and to grasp the situation immediately. If they could not achieve these task, then they should make big problem in the power generations Owing to too many variables, operators could be also in the uncontrolled situation. So in this paper, automatic systems to diagnose the fault are constructed using 2 steps neural networks. This diagnosis method is based on the pattern of the principal variables which could represent the type and severity of faults.

  • PDF

Development of a fast reactor multigroup cross section generation code EXUS-F capable of direct processing of evaluated nuclear data files

  • Lim, Changhyun;Joo, Han Gyu;Yang, Won Sik
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.340-355
    • /
    • 2018
  • The methods and performance of a fast reactor multigroup cross section (XS) generation code EXUS-F are described that is capable of directly processing Evaluated Nuclear Data File format nuclear data files. RECONR of NJOY is used to generate pointwise XS data, and Doppler broadening is incorporated by the Gauss-Hermite quadrature method. The self-shielding effect is incorporated in the ultrafine group XSs in the resolved and unresolved resonance ranges. Functions to generate scattering transfer matrices and fission spectrum matrices are realized. The extended transport approximation is used in zero-dimensional calculations, whereas the collision probability method and the method of characteristics are used for one-dimensional cylindrical geometry and two-dimensional hexagonal geometry problems, respectively. Verification calculations are performed first for various homogeneous mixtures and cylindrical problems. It is confirmed that the spectrum calculations and the corresponding multigroup XS generations are performed adequately in that the reactivity errors are less than 50 pcm with the McCARD Monte Carlo solutions. The nTRACER core calculations are performed with the EXUS-F-generated 47 group XSs for the two-dimensional Advanced Burner Reactor 1000 benchmark problem. The reactivity error of 160 pcm and the root mean square error of the pin powers of 0.7% indicate that EXUF-F generates properly the broad-group XSs.

Cooling Water Utility of Future Clean Energy Source KSTAR (미래 청정에너지원 KSTAR의 냉각수설비)

  • Lee, J.M.;Kim, Y.J.;Park, D.S.;Lim, D.S.
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.596-601
    • /
    • 2006
  • Because of insufficiency of energy resources and pollution of environment, it is necessary to develop alternative energy sources. Nuclear fission energy is used widely for source of electric Power but being restricted due to radioactivity problem. Nuclear fission is highlighted as the new generation of nuclear energy and researched worldwide because of low risk of radiation effect. The representatives of fusion research is China's EAST, KSTAR of Korea and ITER of world. Korea Superconducting Tokamak Advanced Research(KSTAR) project is on progress for the completion in August, 2007. In this study, the research of utility system for KSTAR be carried out. The utility system of KSTAR is consist of water cooling & heating system, $N_2$ gas system, DI water system, service water system and instrument air & auto control system. The progress of KSTAR utility system is under commissioning state after construction completion. The optimal operation scenario will be verified during commissioning and adopted to the KSTAR operation.

  • PDF

Multi-layers grid environment modeling for nuclear facilities: A virtual simulation-based exploration of dose assessment and dose optimization

  • Jia, Ming;Li, Mengkun;Mao, Ting;Yang, Ming
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.956-963
    • /
    • 2020
  • Dose optimization for Radioactive Occupational Personal (ROP) is an important subject in nuclear and radiation safety field. The geometric environment of a nuclear facility is complex and the work area is radioactive, so traditional navigation model and radioactive data field cannot form an effective environment model for dose assessment and dose optimization. The environment model directly affects dose assessment and indirectly affects dose optimization, this is an urgent problem needed to be solved. Therefore, this paper focuses on an environment model used for Dose Assessment and Dose Optimization (DA&DO). We designed a multi-layer radiation field coupling modeling method, and then explored the influence of the environment model to DA&DO by virtual simulation. Then, a simulation test is done, the multi-layer radiation field coupling model for nuclear facilities is demonstrated to be effective for dose assessment and dose optimization through the experiments and analysis.