• Title/Summary/Keyword: nuclear power plant performance

Search Result 514, Processing Time 0.027 seconds

A Study on the Relationship between Steam Generator Fouling and the Electric Power (증기발생기 파울링과 전기출력의 상관성 고찰)

  • Cho, Nam Cheoul;Shin, Dong Man;Kim, Yong Sik
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.2
    • /
    • pp.31-37
    • /
    • 2017
  • The heat transfer function or thermal performance is the most important function of the steam generator component in nuclear power plants. The declining of thermal performance, fouling does not affect the electric power of the nuclear power plant within a certain fouling level, but it affects the output when goes beyond the governor valve wide open of the turbine. The VWO steam pressure can be predicted through the thermal performance evaluation of steam generators in the nuclear power plant. In consideration of the fouling characteristics of the steam generator, methods of the thermal performance evaluation and fouling cases are reviewed, and also the critical VWO value is estimated through the actual thermal performance evaluation. It is necessary to apply the VWO theory based on the thermal performance of the steam generators.

Experimental study to improve drying shrinkage durability performance of Nuclear Power Plant Structure (원전 구조물의 건조수축 저감을 위한 실험적 연구)

  • Lim, Sang-Jun;Lee, Byung-Soo;Bang, Chang-Joon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.205-206
    • /
    • 2012
  • In general, nuclear power plant concrete structure's performance has been very good with the majority of identified problems initiating during construction and corrected at that time. This study is experiments to improve drying shrinkage using glycol ether-based material for the durability of nuclear power plants. Thus, this study evaluated the obtained data from a mock up test for the practical use of concrete containing glycol ether. According to the results of this study, the concrete showed resistance performance of around 40% to drying shrinkage.

  • PDF

Development of Application Technology of High-Strength Reinforcing Bars for Nuclear Power Plant Structure : Performance Evaluation Test of the Wall (원전 구조물의 고강도 철근 적용 기술개발 : 벽체의 성능평가 실험)

  • Kim, Seok-Chul;Lim, Sang-Joon;Lee, Byung-Soo;Bang, Chang-Joon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.201-202
    • /
    • 2012
  • Recently, High-Strength steel reinforcement has been studied throughout the internal and external. One of the advantages using High-Strength steel reinforcement in construction is the economic effect due to the decreasing of its quantity. Also, another good effect is the increases of workability by reason of reducing the congestion. But, realistically it is not used in nuclear power plant construction site because of the restriction of design standard. The purpose of this report secures the reliability and changes the code through the performance evaluation test of the wall using the high-strength steel reinforcement in nuclear power plant.

  • PDF

Procedure Development and Qualification of the Phased Array Ultrasonic Testing for the Nuclear Power Plant Piping Weld (원자력발전소 배관 용접부 위상배열 초음파검사 절차서 개발 및 기량검증)

  • Yoon, Byung-Sik;Yang, Seung-Han;Kim, Yong-Sik;Lee, Hee-Jong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.317-323
    • /
    • 2010
  • The manual ultrasonic examination for the nuclear power plant piping welds has been demonstrated by using KPD(Korean Performance Demonstration) generic procedure. For automated ultrasonic examination, there is no generic procedure and it should be qualified by using applicable automated equipment. Until now, most of qualified procedures used pulse-echo technique and there is no qualified procedure using phased array technique. In this study, data acquisition and analysis software were developed and phased-array transducer and wedge were designed to implement phased array technique for nuclear power plant in-service inspection. The developed procedure are qualified for performance demonstration for the flaw detection, length sizing and depth sizing. The qualified procedure will be applied for the field examination in the nuclear power plant piping weld inspection.

Performance analysis of operators in a nuclear power plant control room using a task network model (직무 네트워크 모형을 이용한 원자력발전소 제어실 운전원들의 수행도분석)

  • 서상문;천세우;이용희
    • Proceedings of the ESK Conference
    • /
    • 1993.10a
    • /
    • pp.21-30
    • /
    • 1993
  • This paper describes the development of a simulation model of nuclear power plant operators including cognitive aspects by using a network modeling soft ware, Micro-SAINT (System Analysis of Integrated Networks of Tasks) for the analysis of operator performance. Network model description based on Micro-SAINT includes tasks, resources, precedence relations among tasks, flow of information and PSFs (Performance Shaping Factors) on task performance. We have tried to evaluate the performance with several performance measures such as the number of tasks allocated, relative time presure among operators within a shift, for the selected test accident scenarior; small-break LOCA (Loss of Coolant Accident) in a PWR (Pressurized Water Reactor) type nuclear power plant.

  • PDF

A Shape of the Response Spectrum for Evaluation of the Ultimate Seismic Capacity of Structures and Equipment including High-frequency Earthquake Characteristics (구조물 및 기기의 한계성능 평가를 위한 고진동수 지진 특성을 반영한 응답스펙트럼 형상)

  • Eem, Seung-Hyun;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • In 2016, an earthquake occurred at Gyeongju, Korea. At the Wolsong site, the observed peak ground acceleration was lower than the operating basis earthquake (OBE) level of Wolsong nuclear power plant. However, the measured spectral acceleration value exceeded the spectral acceleration of the operating-basis earthquake (OBE) level in some sections of the response spectrum, resulting in a manual shutdown of the nuclear power plant. Analysis of the response spectra shape of the Gyeongju earthquake motion showed that the high-frequency components are stronger than the response spectra shape used in nuclear power plant design. Therefore, the seismic performance evaluation of structures and equipment of nuclear power plants should be made to reflect the characteristics of site-specific earthquakes. In general, the floor response spectrum shape at the installation site or the generalized response spectrum shape is used for the seismic performance evaluation of structures and equipment. In this study, a generalized response spectrum shape is proposed for seismic performance evaluation of structures and equipment for nuclear power plants. The proposed response spectrum shape reflects the characteristics of earthquake motion in Korea through earthquake hazard analysis, and it can be applied to structures and equipment at various locations.

A Study on Design Elements of Main Control Room in Nuclear Power Plants by Analyzing Space Characteristics (원자력발전소 주제어실의 공간특성에 따른 디자인 요소에 관한 연구)

  • Lee, Seung-Hoon;Lee, Tae-Yeon
    • Korean Institute of Interior Design Journal
    • /
    • v.19 no.6
    • /
    • pp.249-256
    • /
    • 2010
  • For guaranteeing for security of nuclear power plant, ergonomic factors have been applied to design of main control room, core area for management and control of nuclear power plant, but design elements for performance of operators have been ignored. As the behaviors of operators are important for security of nuclear power plant, space design which makes them pleasant psychologically and makes them maintain attention on security equipments ceaselessly is required. Therefore, the purpose of this study is to analyze space characteristics of main control rooms according to regulations of nuclear power plant and general guidelines of space design, and to offer basic data for designing of main control room which makes operators pleasant psychologically and physically. At first, theoretical issues related with design of main control room are reviewed and several premises of space are developed by abstracting design elements from common space and regulations of nuclear power plant and, then integrating each design elements interactively. In short, the improvement of system environment based on human-machine interface space has brought about perceptual, cognitive, and spatial changes and has realized next generation of main control rooms. And, differences and similarities between ordinary space and main control room, which ergonomic sizes and regulations are applied and is VDT environment based on LDP, are discussed in relation to 13 design elements and 17 space premise.

Study on Performance Demonstration Test Result of Ultrasonic Examination in Nuclear Power Plant (원자력발전소 초음파검사자 기량검증시험 결과 검토)

  • Jung, Nam-Du;Moon, Yong-Sig;Lee, Seung-Pyo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.5
    • /
    • pp.384-389
    • /
    • 2014
  • In this paper, the result of an ultrasonic performance demonstration are analyzed. The requirements for an ultrasonic performance demonstration (PD) for a nuclear power plant were first described in ASME B&P Code Section XI, Appendix VIII (1989 winter addenda). In order to establish the performance demonstration scheme in Korean nuclear power plants, the Korea Hydro & Nuclear Power Co. Ltd (KHNP) has developed the Korean Performance Demonstration (KPD) system for the for the ultrasonic examination of nuclear power plants. An analysis of the ultrasonic performance demonstration results from 2004 through 2013 will improve the detection of flaws in an ultrasonic examination, as well as the further development of the KPD training system.

A Study for Monitoring & Prognostic Technology of Nuclear Power Plant Critical Equipments (원자력발전소 주요기기에 대한 감시 및 예측진단 기술 적용성 고찰)

  • Jo, Sung-Han;Lee, Jae-Ki;Kim, Hyoung-Gwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.11
    • /
    • pp.1090-1094
    • /
    • 2011
  • The major goal of nuclear power industries during past 10 years has been increasing reliability and utility capacity factor. But as capacity factors crept upward, it became harder and harder to attain next percentage of improvement. Therefore, other innovative technologies and method are required. The monitoring, diagnostic and prognostic technologies have been applied to the fossil power plants and contributed a lot on improving their reliability and performance. However nuclear industries are still reluctant to apply the technology by several reasons. In this paper, current preventive maintenance status of nuclear power plants and industrial practice of monitoring, diagnostic and prognostic technologies are investigated. In addition, the restriction in the implementation of the technologies to the nuclear power plants are defined. Finally, we suggest appropriate methods of implementing the technology to nuclear industries for improving current reliability and performance.

A Study on Regenerative OTEC System using the Condenser Effluent of Uljin Nuclear Power Plant (울진 원자력발전소 온배수를 이용한 재생식 해양온도차발전에 대한 연구)

  • Kang, Yun-Young;Park, Sung-Seek;Park, Yun-Beom;Kim, Nam-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.7
    • /
    • pp.591-597
    • /
    • 2012
  • For the past few years, the concern for clean energy has been greatly increased. Ocean thermal Energy Conversion(OTEC) power plants are studied as a viable option for the supply of clean energy. In this study, we examined the thermodynamic performance of the OTEC power system for the production of electric power. Computer simulation programs were developed under the same condition and various working fluids for closed Rankine cycle, regenerative cycle, Kalina cycle, open cycle, and hybrid cycle. The results show that the regenerative cycle showed the best system efficiency. And then we examined the thermodynamic performance of regenerative cycle OTEC power system using the condenser effluent from Uljin nuclear power plant instead of the surface water. The highest system efficiency of the condition was 4.55% and the highest net power was 181 MW.