• 제목/요약/키워드: nuclear power plant(NPP)

검색결과 473건 처리시간 0.025초

Evaluation of various large-scale energy storage technologies for flexible operation of existing pressurized water reactors

  • Heo, Jin Young;Park, Jung Hwan;Chae, Yong Jae;Oh, Seung Hwan;Lee, So Young;Lee, Ju Yeon;Gnanapragasam, Nirmal;Lee, Jeong Ik
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2427-2444
    • /
    • 2021
  • The lack of plant-side energy storage analysis to support nuclear power plants (NPP), has setup this research endeavor to understand the characteristics and role of specific storage technologies and the integration to an NPP. The paper provides a qualitative review of a wide range of configurations for integrating the energy storage system (ESS) to an operating NPP with pressurized water reactor (PWR). The role of ESS technologies most suitable for large-scale storage are evaluated, including thermal energy storage, compressed gas energy storage, and liquid air energy storage. The methods of integration to the NPP steam cycle are introduced and categorized as electrical, mechanical, and thermal, with a review on developments in the integration of ESS with an operating PWR. By adopting simplified off-design modeling for the steam turbines and heat exchangers, the results show the performance of the PWR steam cycle changes with respect to steam bypass rate for thermal and mechanical storage integration options. Analysis of the integrated system characteristics of proposed concepts for three different ESS suggests that certain storage technologies could support steady operation of an NPP. After having reviewed what have been accomplished through the years, the research team presents a list of possible future works.

시스템즈 엔지니어링 기법을 이용한 원자력발전소 부지 선정 방법에 대한 연구 (NPP Site Selection : A Systems Engineering Approach)

  • ;;;정재천
    • 시스템엔지니어링학술지
    • /
    • 제9권1호
    • /
    • pp.55-63
    • /
    • 2013
  • Nuclear power plant site selection is a complex process and its successful completion is a critical milestone in the NPP development cycle. Proper siting of NPP will ensure public health and safety, environmental conservation, reduced project failure risks and a smooth NPP development process among other benefits. The objective of this paper is to demonstrate the application of systems engineering to the problem of NPP siting in Kenya. The siting process demonstrated in this paper includes stakeholder need analysis where stakeholders are identified and their needs concerning NPP site are elicited and converted into system functional requirements. A value model is then developed and potential sites iteratively subjected to three types of criteria i.e. exclusionary criteria, avoidance criteria and suitability criteria. This process is used to identify the candidate sites. An additive value model; multiple objectives Decision Analysis (MODA) is then used to calculate candidate solutions values. The site with the highest solution value score is selected. Sensitivity studies using different criterion weight sets (thereby reflecting different viewpoints) can be conducted to assess their effect on the selection of a preferred site and thereby lend additional credibility to the decision process.

Development of simulation-based testing environment for safety-critical software

  • Lee, Sang Hun;Lee, Seung Jun;Park, Jinkyun;Lee, Eun-chan;Kang, Hyun Gook
    • Nuclear Engineering and Technology
    • /
    • 제50권4호
    • /
    • pp.570-581
    • /
    • 2018
  • Recently, a software program has been used in nuclear power plants (NPPs) to digitalize many instrumentation and control systems. To guarantee NPP safety, the reliability of the software used in safetycritical instrumentation and control systems must be quantified and verified with proper test cases and test environment. In this study, a software testing method using a simulation-based software test bed is proposed. The test bed is developed by emulating the microprocessor architecture of the programmable logic controller used in NPP safety-critical applications and capturing its behavior at each machine instruction. The effectiveness of the proposed method is demonstrated via a case study. To represent the possible states of software input and the internal variables that contribute to generating a dedicated safety signal, the software test cases are developed in consideration of the digital characteristics of the target system and the plant dynamics. The method provides a practical way to conduct exhaustive software testing, which can prove the software to be error free and minimize the uncertainty in software reliability quantification. Compared with existing testing methods, it can effectively reduce the software testing effort by emulating the programmable logic controller behavior at the machine level.

Impact-resistant design of RC slabs in nuclear power plant buildings

  • Li, Z.C.;Jia, P.C.;Jia, J.Y.;Wu, H.;Ma, L.L.
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3745-3765
    • /
    • 2022
  • The concrete structures related to nuclear safety are threatened by accidental impact loadings, mainly including the low-velocity drop-weight impact (e.g., spent fuel cask and assembly, etc. with the velocity less than 20 m/s) and high-speed projectile impact (e.g., steel pipe, valve, turbine bucket, etc. with the velocity higher than 20 m/s), while the existing studies are still limited in the impact resistant design of nuclear power plant (NPP), especially the primary RC slab. This paper aims to propose the numerical simulation and theoretical approaches to assist the impact-resistant design of RC slab in NPP. Firstly, the continuous surface cap (CSC) model parameters for concrete with the compressive strength of 20-70 MPa are fully calibrated and verified, and the refined numerical simulation approach is proposed. Secondly, the two-degree freedom (TDOF) model with considering the mutual effect of flexural and shear resistance of RC slab are developed. Furthermore, based on the low-velocity drop hammer tests and high-speed soft/hard projectile impact tests on RC slabs, the adopted numerical simulation and TDOF model approaches are fully validated by the flexural and punching shear damage, deflection, and impact force time-histories of RC slabs. Finally, as for the two low-velocity impact scenarios, the design procedure of RC slab based on TDOF model is validated and recommended. Meanwhile, as for the four actual high-speed impact scenarios, the impact-resistant design specification in Chinese code NB/T 20012-2019 is evaluated, the over conservation of which is found, and the proposed numerical approach is recommended. The present work could beneficially guide the impact-resistant design and safety assessment of NPPs against the accidental impact loadings.

Sentiment analysis of nuclear energy-related articles and their comments on a portal site in Rep. of Korea in 2010-2019

  • Jeong, So Yun;Kim, Jae Wook;Kim, Young Seo;Joo, Han Young;Moon, Joo Hyun
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.1013-1019
    • /
    • 2021
  • This paper reviewed the temporal changes in the public opinions on nuclear energy in Korea with a big data analysis of nuclear energy-related articles and their comments posted on the portal site NAVER. All articles that included at least one of "nuclear energy," "nuclear power plant (NPP)," "nuclear power phase-out," or "anti-nuclear" in their titles or main text were extracted from those posted on NAVER in January 2010-December 2019. First, we performed annual word frequency analysis to identify what words had appeared most frequently in the articles. For that period, the most frequent words were "NPP," "nuclear energy," and "energy." In addition, "safety" has remained in the upper ranks since the Fukushima NPP accident. Then, we performed sentiment analysis of the pre-processed articles. The sentiment analysis showed that positive-tone articles have been reported more frequently than negativetone over the entire analysis period. Last, we performed sentiment analysis of the comments on the articles to examine the public's intention regarding nuclear issues. The analysis showed that the number of negative comments to articles each month-irrespective of positive or negative tone-was always larger than that of positive comments over the entire analysis period.

A Study on the Application of CRUDTRAN Code in Primary Systems of Domestic Pressurized Heavy-Water Reactors for Prediction of Radiation Source Term

  • Song, Jong Soon;Cho, Hoon Jo;Jung, Min Young;Lee, Sang Heon
    • Nuclear Engineering and Technology
    • /
    • 제49권3호
    • /
    • pp.638-644
    • /
    • 2017
  • The importance of developing a source-term assessment technology has been emphasized owing to the decommissioning of Kori nuclear power plant (NPP) Unit 1 and the increase of deteriorated NPPs. We analyzed the behavioral mechanism of corrosion products in the primary system of a pressurized heavy-water reactor-type NPP. In addition, to check the possibility of applying the CRUDTRAN code to a Canadian Deuterium Uranium Reactor (CANDU)-type NPP, the type was assessed using collected domestic onsite data. With the assessment results, it was possible to predict trends according to operating cycles. Values estimated using the code were similar to the measured values. The results of this study are expected to be used to manage the radiation exposures of operators in high-radiation areas and to predict decommissioning processes in the primary system.

Probabilistic safety assessment-based importance analysis of cyber-attacks on nuclear power plants

  • Park, Jong Woo;Lee, Seung Jun
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.138-145
    • /
    • 2019
  • With the application of digital technology to safety-critical infrastructures, cyber-attacks have emerged as one of the new dangerous threats. In safety-critical infrastructures such as a nuclear power plant (NPP), a cyber-attack could have serious consequences by initiating dangerous events or rendering important safety systems unavailable. Since a cyber-attack is conducted intentionally, numerous possible cases should be considered for developing a cyber security system, such as the attack paths, methods, and potential target systems. Therefore, prior to developing a risk-informed cyber security strategy, the importance of cyber-attacks and significant critical digital assets (CDAs) should be analyzed. In this work, an importance analysis method for cyber-attacks on an NPP was proposed using the probabilistic safety assessment (PSA) method. To develop an importance analysis framework for cyber-attacks, possible cyber-attacks were identified with failure modes, and a PSA model for cyber-attacks was developed. For case studies, the quantitative evaluations of cyber-attack scenarios were performed using the proposed method. By using quantitative importance of cyber-attacks and identifying significant CDAs that must be defended against cyber-attacks, it is possible to develop an efficient and reliable defense strategy against cyber-attacks on NPPs.

Seismic capacity re-evaluation of the 480V motor control center of South Korea NPPs using earthquake experience and experiment data

  • Choi, Eujeong;Kim, Min Kyu;Choi, In-Kil
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1363-1373
    • /
    • 2022
  • The recent seismic events that occurred in South Korea have increased the interest in the re-evaluation of the seismic capacity of nuclear power plant (NPP) equipment, which is often conservatively estimated. To date, various approaches-including the Bayesian method proposed by the United States (US) Electric Power Research Institute -have been developed to quantify the seismic capacity of NPP equipment. Among these, the Bayesian approach has advantages in accounting for both prior knowledge and new information to update the probabilistic distribution of seismic capacity. However, data availability and region-specific issues exist in applying this Bayesian approach to Korean NPP equipment. Therefore, this paper proposes to construct an earthquake experience database by combining available earthquake records at Korean NPP sites and the general location of equipment within NPPs. Also, for the better representation of the seismic demand of Korean earthquake datasets, which have distinct seismic characteristics from those of the US at a high-frequency range, a broadband frequency range optimization is suggested. The proposed data construction and seismic demand optimization method for seismic capacity re-evaluation are demonstrated and tested on a 480 V motor control center of a South Korea NPP.

원전건설 발주 및 계약체계에 대한 고찰 (A Study of the Construction Contracts and Delivery System for Nuclear Power Plant)

  • 서용덕;원서경
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 추계 학술논문 발표대회
    • /
    • pp.233-235
    • /
    • 2012
  • Continually having growed up overseas construction market for new Nuclear Power Plant(NPP), the exports of Korean Reactor emerges as the key task of National Nuclear Business. The objective of this study is to strengthen the competitiveness of Korean Reactor through the improvement of Construction Project Contract & Delivery System for NPP. This study suggests the method for increasing Korean Reactor's competitiveness of exports by analyzing the business environment of foreign market and comparing Contract & Delivery System between domestic and foreign.

  • PDF

Environment Design for Digitalized Main Control Room in Nuclear Power Plant

  • Cha, Woo Chang
    • 시스템엔지니어링학술지
    • /
    • 제7권2호
    • /
    • pp.1-5
    • /
    • 2011
  • The purpose of the Environment Design (ED) for Main Control Room (MCR) of Nuclear Power Plant (NPP) is to provide and create an optimal working space to be free from physical, physiological and mental stress as well as environmental discomfort, based on the previous environment design experiences and to recommend the best ED including the color, the lighting and the interior design. Environment Design consists of three main areas: Human factor engineering design, Interior design with color design, and Lighting design. These design areas have been interactively cooperated in a way that each design specialist would share the objectives and concepts of the Environment Design for MCR. The specialists for Human Factors Engineering design had a corporative role in such a way to provide the guidelines for MCR design suitability of Interior and Lighting design considering the Human System Interface (HSI) safety concerns. This paper describes fruitful efforts to create the best fit for MCR ED among several design proposals with the design recommendations, impacts, and contributions to NPP environment.