• Title/Summary/Keyword: nuclear power industry

Search Result 443, Processing Time 0.032 seconds

A Study on Fault Diagnosis Algorithm for Rotary Machine using Data Mining Method and Empirical Mode Decomposition (데이터 마이닝 기법 및 경험적 모드 분해법을 이용한 회전체 이상 진단 알고리즘 개발에 관한 연구)

  • Yun, Sang-hwan;Park, Byeong-hui;Lee, Changwoo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.23-29
    • /
    • 2016
  • Rotary machine is major equipment in industry. The rotary machine is applied for a machine tool, ship, vehicle, power plant, and so on. But a spindle fault increase product's expense and decrease quality of a workpiece in machine tool. A turbine in power plant is directly connected to human safety. National crisis could be happened by stopping of rotary machine in nuclear plant. Therefore, it is very important to know rotary machine condition in industry field. This study mentioned fault diagnosis algorithm with statistical parameter and empirical mode decomposition. Vibration locations can be found by analyze kurtosis of data from triaxial axis. Support vector of data determine threshold using hyperplane with fault location. Empirical mode decomposition is used to find fault caused by intrinsic mode. This paper suggested algorithm to find direction and causes from generated fault.

The Right Person for the Right Job: a Study on the Need for Enhancing Collaboration between Shipping Companies & Maritime Academies

  • Davy, James G.;Noh, Chang-Kyun
    • Journal of Navigation and Port Research
    • /
    • v.36 no.4
    • /
    • pp.291-298
    • /
    • 2012
  • Working onboard large ocean-going vessels is one of many industries that is by its very nature extremely error-provoking. In industries such as aviation, nuclear power, healthcare and transport, the need for mental preparedness and professionalism are amongst the qualities essential for the management of complex hazardous systems. Recruiting, training, and more importantly retaining the right people to work in these industries is of paramount importance if safety is to be continuously improved and economic benefits realized. Through consideration of extant empirical literature this paper will explore the need for enhancing collaboration between shipping companies and maritime training insitutes in order to provide the industry with those most capable for the job. It will be concluded that by providing a strong maritime foundation from the outset of training, maritime academies in South Korea can provide shipping companies with a wealth of highly qualified, motivated officers who will contribute to safety and remain valuable assets within the industry for years to come.

The Right Person for the Right Job: a Study on the Need for Enhancing Collaboration between Shipping Companies & Maritime Academies

  • Davy, James G.;Noh, Chang-Kyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.06a
    • /
    • pp.35-37
    • /
    • 2012
  • Working onboard large ocean-going vessels is one of many industries that is by its very nature extremely errorprovoking. In industries such as aviation, nuclear power, healthcare and transport, the need for mental preparedness and professionalism are amongst the qualities essential for the management of complex hazardous systems. Recruiting, training, and more importantly retaining the right people to work in these industries is of paramount importance if safety is to be continuously improved and economic benefits realized. Through consideration of extant empirical literature this paper will explore the need for enhancing collaboration between shipping companies and maritime training institutes in order to provide the industry with those most capable for the job. It will be concluded that by providing a strong maritime foundation from the outset of training, maritime academies in South Korea can provide shipping companies with a wealth of highly qualified, motivated officers who will contribute to safety and remain valuable assets within the industry for years to come.

  • PDF

Switching Surge Analysis of Vacuum Circuit breaker using EMTP (EMTP를 이용한 진공차단기의 스위칭 써지 해석)

  • Kim, Ik-Mo;Kim, Ji-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2008-2010
    • /
    • 2000
  • The first objective of this study is to set up the switching surge analysis method in motor driving distribution system. The simplified model which can simulate the motor energization and circuit breaker re-ignitions. and each circuit element model is presented in this paper. The second objective is to calculate the quantity of surge over-voltage in real nuclear power station. And the surge suppressing measures are verified on the simulation basis. It is clarified that most cases are not satisfactory to meet the IEEE standard 522-1992 without using surge suppressing measures. In cases that the surge arrester are installed in distribution board at the load side of circuit breaker. The IEEE specification is fully met.

  • PDF

The Radiation Resistance Evaluation of Electrically Insulating Polymers

  • Lee, Dong-Hoon;Jung, Chan-Hee;Hwang, In-Tae;Choi, Jae-Hak;Im, Don-Sun;Kim, Ki-Yup;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.5 no.3
    • /
    • pp.237-242
    • /
    • 2011
  • In this research, the radiation resistance of ethylene propylene rubber (EPR) and chlorosulfonated polyethylene (CSPE) which can be used as a insulating materials of for electrical cable in the nuclear power plant were investigated. EPR and CSPE were irradiated by ${\gamma}$-ray at various doses ranging from 50 to 500 kGy at room temperature in air. The irradiated EPR and CSPE was investigated in terms of activation energy, mechanical properties, and oxidation stability. The experimental results revealed that CSPE exhibited the higher radiation resistance in comparison to that of EPR.

Small Unmanned Aerial System (SUAS) for Automating Concrete Crack Monitoring: Initial Development

  • Kang, Julian;Lho, B.C.;Kim, J.W.;Nam, S.H.
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.310-312
    • /
    • 2015
  • Small Unmanned Aerial Systems (SUAS) have been gaining a special attention in the U.S. recently because it is capable of getting aerial footages conveniently and cost effectively, but also because of its potential threat to the safety of our society. Regarding the benefits, one can easily find successful cases. For example, remote controlled or pre-programmed unmanned aircraft help ranch owners monitor their livestocks or crop harvesting status cost-effectively without having to hire human pilots. The professionals in the construction industry also acknowledge the benefits they could gain from using SUAS. Some firms already use a small unmanned aircraft for monitoring their construction activities, which may help project managers figure out construction progress, resolve disputes in real time, and make proactive decisions for quality control. However, there are many technical challenges that my hinder the use of small unmanned aircraft in the construction industry. This paper explores opportunities and challenges in using unmanned aircraft to monitor concrete cracks on the surface of containment building in the nuclear power plant.

  • PDF

Analysis on the effects of the UNFCCC(United Nations Framework Convention on Climate Change) on the Primary Exports Industry of Korea (국제환경협약이 우리나라 수출산업에 미치는 영향분석 : 기후환경협약을 중심으로)

  • Yong-Seok Cho;Yoon-Say Jeong
    • Korea Trade Review
    • /
    • v.47 no.4
    • /
    • pp.15-33
    • /
    • 2022
  • This study is to investigate multilateral environmental agreements,mainly UNFCCC on the primary export industry of Korea and to make a policy recommendation. Mostly literature reviews are focused on the traditional multilateral environmental agreements and the for the most part analysis are conducted prior to the Paris agreement. The result of survey indicates that many companies have not yet felt burden on their business due to UNFCCC(decarbonization) and have monitored the related policies. But the companies ask the government for strong incentives. The paper implies that enforcing strong government incentives, upgrading usage of the nuclear power, improving the related government legislation, setting up the special task force team with government and private sectors are needed.

Development of Cesium-selective Paramagnetic Core Inorganic Composite Agent for Water Decontamination (수질오염 제염을 위한 세슘 선택성 상자성 코어 무기복합제염제 개발)

  • Seong Pyo Hong;Bo-Sun Kang
    • Journal of Radiation Industry
    • /
    • v.18 no.2
    • /
    • pp.127-132
    • /
    • 2024
  • Large amounts of liquid radioactive waste or radioactive contaminated water could be produced during the treatment of radiation accidents or during the dismantling and decontamination process of nuclear power plants. Since most of the decontamination agents to date are difficult to recover after adsorption of radioactive isotopes, their use in open environments such as rivers, reservoirs, or oceans is limited. In this study, as a radioactive decontamination agent that can overcome the current limitations when used in an open environment, a paramagnetic core inorganic composite (PMCIC) decomposite agent with high selectivity to cesium ions was developed. PMCore was prepared by synthesizing paramagnetic iron oxide nanoparticles, and inorganic crystals such as metal-ferrocyanide were conjugated to the surface so that PMCore could be selective to cesium ions. The developed PMCIC could be easily recovered from the water by magnetism and could adsorb up to 94 μM of Cs atoms per 1 g of PMCIC.

A Study of Wind Characteristics around Nuclear Power Plants Based on the Joint Distribution of the Wind Direction and Wind Speed

  • Yunjong Lee
    • Journal of Radiation Industry
    • /
    • v.17 no.3
    • /
    • pp.299-307
    • /
    • 2023
  • Given that toxic substances are diffused by the various movements of the atmosphere, it is very important to evaluate the risks associated with this phenomenon. When analyzing the behavioral characteristics of these atmospheric diffusion models, the main input data are the wind speed and wind direction among the meteorological data. In particular, it is known that a certain wind direction occurs in summer and winter in Korea under the influence of westerlies and monsoons. In this study, synoptic meteorological observation data provided by the Korea Meteorological Administration were analyzed from January 1, 2012 to the end of August of 2022 to understand the regional wind characteristics of nuclear power plants and surrounding areas. The selected target areas consisted of 16 weather stations around the Hanbit, Kori, Wolsong, Hanul, and Saeul nuclear power plants that are currently in operation. The analysis was based on the temperature, wind direction, and wind speed data at those locations. Average, maximum, minimum, median, and mode values were analyzed using long-term annual temperature, wind speed, and wind direction data. Correlation coefficient values were also analyzed to determine the linear relationships among the temperature, wind direction, and wind speed. Among the 16 districts, Uljin had the highest wind speed. The median wind speed values for each region were lower than the average wind speed values. For regions where the average wind speed exceeds the median wind speed, Yeongju, Gochang, Gyeongju, Yeonggwang, and Gimhae were calculated as 0.69 m s-1, 0.54m s-1, 0.45m s-1, 0.4m s-1, and 0.36m s-1, respectively. The average temperature in the 16 regions was 13.52 degrees Celsius; the median temperature was 14.31 degrees and the mode temperature was 20.69 degrees. The average regional temperature standard deviation was calculated and found to be 9.83 degrees. The maximum summer temperatures were 39.7, 39.5, and 39.3 in Yeongdeok, Pohang, and Yeongcheon, respectively. The wind directions and speeds in the 16 regions were plotted as a wind rose graph, and the characteristics of the wind direction and speed of each region were investigated. It was found that there is a dominant wind direction correlated with the topographical characteristics in each region. However, the linear relationship between the wind speed and direction by region varied from 0.53 to 0.07. Through this study, by evaluating meteorological observation data on a long-term synoptic scale of ten years, regional characteristics were found.

Determination of escape rate coefficients of fission products from the defective fuel rod with large defects in PWR

  • Pengtao Fu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2977-2983
    • /
    • 2023
  • During normal operation, some parts of the fission product in the defective fuel rods can release into the primary loops in PWR and the escape rate coefficients are widely used to assess quantitatively the release behaviors of fission products in the industry. The escape rate coefficients have been standardized and have been validated by some drilling experiments before the 1970s. In the paper, the model to determine the escape rate coefficients of fission products has been established and the typical escape rate coefficients of noble gas and iodine have been deduced based on the measured radiochemical data in one operating PWR. The result shows that the apparent escape rate coefficients vary with the release-to-birth and decay constants for different fission products of the same element. In addition, it is found that the escape rate coefficients from the defective rod with large defects are much higher than the standard escape rate coefficients, i.e., averagely 4.4 times and 1.8 times for noble gas and iodine respectively. The enhanced release of fission products from the severe secondary hydriding of several defective fuel rods in one cycle may lead to the potential risk of the temporary shutdown of the operating reactors.