• Title/Summary/Keyword: nuclear materials

Search Result 3,240, Processing Time 0.036 seconds

EFFECTS OF HEAT TREATMENTS ON MICROSTRUCTURES AND MECHANICAL PROPERTIES OF DUAL PHASE ODS STEELS FOR HIGH TEMPERATURE STRENGTH

  • Noh, Sanghoon;Choi, Byoung-Kwon;Han, Chang-Hee;Kang, Suk Hoon;Jang, Jinsung;Jeong, Yong-Hwan;Kim, Tae Kyu
    • Nuclear Engineering and Technology
    • /
    • v.45 no.6
    • /
    • pp.821-826
    • /
    • 2013
  • In the present study, the effects of various heat treatments on the microstructure and mechanical properties of dual phase ODS steels were investigated to enhance the high strength at elevated temperature. Dual phase ODS steels have been designed by the control of ferrite and austenite formers, i.e., Cr, W and Ni, C in Fe-based alloys. The ODS steels were fabricated by mechanical alloying and a hot isostatic pressing process. Heat treatments, including hot rolling-tempering and normalizing-tempering with air- and furnace-cooling, were carefully carried out. It was revealed that the grain size and oxide distributions of the ODS steels can be changed by heat treatment, which significantly affected the strengths at elevated temperature. Therefore, the high temperature strength of dual phase ODS steel can be enhanced by a proper heat treatment process with a good combination of ferrite grains, nano-oxide particles, and grain boundary sliding.

CORROSION BEHAVIOR OF NI-BASE ALLOYS IN SUPERCRITICAL WATER

  • Zhang, Qiang;Tang, Rui;Li, Cong;Luo, Xin;Long, Chongsheng;Yin, Kaiju
    • Nuclear Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.107-112
    • /
    • 2009
  • Corrosion of nickel-base alloys (Hastelloy C-276, Inconel 625, and Inconel X-750) in $500^{\circ}C$, 25MPa supercritical water (with 10 wppb oxygen) was investigated to evaluate the suitability of these alloys for use in supercritical water reactors. Oxide scales formed on the samples were characterized by gravimetry, scanning electron microscopy/energy dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The results indicate that, during the 1000h exposure, a dense spinel oxide layer, mainly consisting of a fine Cr-rich inner layer ($NiCr_{2}O_{4}$) underneath a coarse Fe-rich outer layer ($NiFe_{2}O_{4}$), developed on each alloy. Besides general corrosion, nodular corrosion occurred on alloy 625 possibly resulting from local attack of ${\gamma}$" clusters in the matrix. The mass gains for all alloys were small, while alloy X -750 exhibited the highest oxidation rate, probably due to the absence of Mo.

CORROSION BEHAVIOR OF AUSTENITIC AND FERRITIC STEELS IN SUPERCRITICAL WATER

  • Luo, Xin;Tang, Rui;Long, Chongsheng;Miao, Zhi;Peng, Qian;Li, Cong
    • Nuclear Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.147-154
    • /
    • 2008
  • The general corrosion behavior of austenitic and ferritic steels(316L, 304, N controlled 304L, and 410) in supercritical water is investigated in this paper. After exposure to deaerated supercritical water at $480^{\circ}C$/25 MPa for up to 500 h, the four steels studied were characterized using gravimetry, scanning electron microscopy/energy dispersive X-ray spectroscopy(SEM/EDS), X-ray photoelectron spectroscopy(XPS), and X-ray diffraction(XRD). The results show that the 316L steel with a higher Cr and Ni content has the best corrosion-resistance performance among the steels tested. In addition to the oxide layer mixed with $Fe_{3}O_{4}$ and $(Fe,Cr)_{3}O_{4}$ that formed on all the samples, a $Fe_{3}O_{4}$ loose outer layer was observed on the 410 steel. The corrosion mechanism of stainless steels in supercritical water is discussed based on the above results.

INVESTIGATION ON MATERIAL DEGRADATION OF ALLOY 617 IN HIGH TEMPERATURE IMPURE HELIUM COOLANT

  • Kim, Dong-Jin;Lee, Gyeong-Geun;Jeong, Su-Jin;Kim, Woo-Gon;Park, Ji-Yeon
    • Nuclear Engineering and Technology
    • /
    • v.43 no.5
    • /
    • pp.429-436
    • /
    • 2011
  • The corrosion of materials exposed to high temperature helium in a very high temperature reactor is caused by interaction with the impurities in the helium. This interaction then induces high temperature mechanical deterioration. By considering the effect of the impurity concentration on material corrosion, a long-term coolant chemistry guideline can be determined for the range of impurity concentration at which the material is stable for a long time. In this work, surface reactions were investigated by analyzing the thermodynamics and the experimental results for Alloy 617 exposed to controlled impure helium at $950^{\circ}C$. Moreover, the surfaces were examined for the Alloy 617 crept in air and in uncontrolled helium, which was explained by possible surface reactions.

Survivability assessment of Viton in safety-related equipment under simulated severe accident environments

  • Ryu, Kyungha;Song, Inyoung;Lee, Taehyun;Lee, Sanghyuk;Kim, Youngjoong;Kim, Ji Hyun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.683-689
    • /
    • 2018
  • To evaluate equipment survivability of the polymer Viton, used in sealing materials, the effects of its thermal degradation were investigated in severe accident (SA) environment in a nuclear power plant. Viton specimens were prepared and thermally degraded at different SA temperature profiles. Changes in mechanical properties at different temperature profiles in different SA states were investigated. The thermal lag analysis was performed at calculated convective heat transfer conditions to predict the exposure temperature of the polymer inside the safety-related equipment. The polymer that was thermally degraded at postaccident states exhibited the highest change in its mechanical properties, such as tensile strength and elongation.