• Title/Summary/Keyword: nuclear magnetic resonance imaging

Search Result 117, Processing Time 0.032 seconds

Correlation Between Unidentified Bright Objects on Brain Magnetic Resonance Imaging (MRI) and Cerebral Glucose Metabolism in Patients with Neurofibromatosis Type 1

  • Sohn, Young Bae;An, Young Sil;Lee, Su Jin;Choi, Jin Wook;Jeong, Seon-Yong;Kim, Hyon-Ju;Ko, Jung Min
    • Journal of Genetic Medicine
    • /
    • v.9 no.2
    • /
    • pp.84-88
    • /
    • 2012
  • Purpose: Neurofibromatosis type 1 (NF1), which is caused by mutations of the NF1 gene, is the most frequent single gene disorder to affect the nervous system. Unidentified bright objects (UBOs) are commonly observed on brain magnetic resonance imaging (MRI) in patients with NF1. However, their clinical and pathologic significance is not well understood. The purpose of this study was to investigate the correlation between UBOs and cerebral glucose metabolism measured by $^{18}F$-2-Fluoro-2-deoxy-D-glucose ($^{18}F$-FDG) positron emission tomography (PET) in Korean patients with NF1. Materials and Methods: Medical records of 75 patients (34 males and 41 females) with NF1 who underwent brain MRI and PET between 2005 and 2011 were evaluated retrospectively. Clinical data including demographics, neurological symptoms, and brain MRI and PET findings, were reviewed. Results: UBOs were detected in the brain MRI scans of 31 patients (41%). The region most frequently affected by UBOs was the basal ganglia. The most frequent brain PET finding was thalamic glucose hypometabolism (45/75, 60%). Of the 31 patients with UBOs, 26 had thalamic glucose hypometabolism on brain PET, but the other 5 had normal brain PET findings. Conversely, of the 45 patients with thalamic glucose hypometabolism on brain PET, 26 showed UBOs on their brain MRI scans, but 19 had normal findings on brain MRI scans. Conclusion: UBOs on brain MRI scans and thalamic glucose hypometabolism on PET appear to be 2 distinctive features of NF1 rather than correlated symptoms. Because the clinical significance of these abnormal imaging findings remains unclear, a longitudinal follow-up study of changes in clinical manifestations and imaging findings is necessary.

Prognostic value of $^{18}F$-fluorodeoxyglucose positron emission tomography, computed tomography and magnetic resonance imaging in oral cavity squamous cell carcinoma with pathologically positive neck lymph node

  • Jwa, Eunjin;Lee, Sang-Wook;Kim, Jae-Seung;Park, Jin Hong;Kim, Su Ssan;Kim, Young Seok;Yoon, Sang Min;Song, Si Yeol;Kim, Jong Hoon;Choi, Eun Kyung;Ahn, Seung Do
    • Radiation Oncology Journal
    • /
    • v.30 no.4
    • /
    • pp.173-181
    • /
    • 2012
  • Purpose: To evaluate the prognostic value of preoperative neck lymph node (LN) assessment with $^{18}F$-fluorodeoxyglucose positron emission tomography ($^{18}F$-FDG PET), computed tomography (CT), and magnetic resonance imaging (MRI) in oral cavity squamous cell carcinoma (OSCC) patients with pathologically positive LN. Materials and Methods: In total, 47 OSCC patients with pathologically positive LN were retrospectively reviewed with preoperative $^{18}F$-FDG PET and CT/MRI. All patients underwent surgical resection, neck dissection and postoperative adjuvant radiotherapy and/or chemotherapy between March 2002 and October 2010. Histologic correlation was performed for findings of $^{18}F$-FDG PET and CT/MRI. Results: Thirty-six (76.6%) of 47 cases were correctly diagnosed with neck LN metastasis by $^{18}F$-FDG PET and 32 (68.1%) of 47 cases were correctly diagnosed by CT/MRI. Follow-up ranged from 20 to 114 months (median, 56 months). Clinically negative nodal status evaluated by $^{18}F$-FDG PET or CT/MRI revealed a trend toward better clinical outcomes in terms of overall survival, disease-free survival, local recurrence-free survival, regional nodal recurrence-free survival, and distant metastasis-free survival rates even though the trends were not statistically significant. However, there was no impact of neck node standardized uptake value ($SUV_{max}$) on clinical outcomes. Notably, $SUV_{max}$ showed significant correlation with tumor size in LN (p < 0.01, $R^2$ = 0.62). PET and CT/MRI status of LN also had significant correlation with the size of intranodal tumor deposit (p < 0.05, $R^2$ = 0.37 and p < 0.01, $R^2$ = 0.48, respectively). Conclusion: $^{18}F$-FDG PET and CT/MRI at the neck LNs might improve risk stratification in OSCC patients with pathologically positive neck LN in this study, even without significant prognostic value of $SUV_{max}$.

Are There Any Additional Benefits to Performing Positron Emission Tomography/Computed Tomography Scans and Brain Magnetic Resonance Imaging on Patients with Ground-Glass Nodules Prior to Surgery?

  • Song, Jae-Uk;Song, Junwhi;Lee, Kyung Jong;Kim, Hojoong;Kwon, O Jung;Choi, Joon Young;Kim, Jhingook;Han, Joungho;Um, Sang-Won
    • Tuberculosis and Respiratory Diseases
    • /
    • v.80 no.4
    • /
    • pp.368-376
    • /
    • 2017
  • Background: A ground-glass nodule (GGN) represents early-stage lung adenocarcinoma. However, there is still no consensus for preoperative staging of GGNs. Therefore, we evaluated the need for the routine use of positron emission tomography/computed tomography (PET)/computed tomography (CT) scans and brain magnetic resonance imaging (MRI) during staging. Methods: A retrospective analysis was undertaken in 72 patients with 74 GGNs of less than 3 cm in diameter, which were confirmed via surgery as malignancy, at the Samsung Medical Center between May 2010 and December 2011. Results: The median age of the patients was 59 years. The median GGN diameter was 18 mm. Pure and part-solid GGNs were identified in 35 (47.3%) and 39 (52.7%) cases, respectively. No mediastinal or distant metastasis was observed in these patients. In preoperative staging, all of the 74 GGNs were categorized as stage IA via chest CT scans. Additional PET/CT scans and brain MRIs classified 71 GGNs as stage IA, one as stage IIIA, and two as stage IV. However, surgery and additional diagnostic work-ups for abnormal findings from PET/CT scans classified 70 GGNs as stage IA, three as stage IB, and one as stage IIA. The chest CT scans did not differ from the combined modality of PET/CT scans and brain MRIs for the determination of the overall stage (94.6% vs. 90.5%; kappa value, 0.712). Conclusion: PET/CT scans in combination with brain MRIs have no additional benefit for the staging of patients with GGN lung adenocarcinoma before surgery.

Ex Vivo ${1}^H$ MR Spectroscopy: Normal gastric and cancer tissue (정상 위 조직과 위암 조직의 시험관 내 수소자기공명분광)

  • Cho Ji Youn;Shin Oon Jae;Choi Ki Seung;Kim Su Hyun;Eun Choong Ki;Yang Young Il;Lee Jung Hee;Mun Chi Woong
    • Journal of Gastric Cancer
    • /
    • v.3 no.3
    • /
    • pp.151-157
    • /
    • 2003
  • Purpose: In this study, we attempted to ascertain the proton magnetic resonance spectroscopy (${1}^H$ MRS) peak characteristics of human gastric tissue layers and finally to use the metabolic peaks of MRS to distinguish between normal and abnormal gastric specimens. Materials and Methods: Ex-vivo ${1}^H$ MRS examinations of thirty-five gastric specimens were performed to distinguish abnormal gastric tissues invaded by carcinoma cells from normal stomach-wall tissues. High-resolution 400-MHz (9.4-T) ${1}^H$ nuclear magnetic resonance (NMR) spectra of two gastric layers, a proper muscle layer, and a composite mucosasubmucosa layer were compared with those of clinical 64- MHz (1.5-T) MR spectra. Three-dimensional spoiled gradient recalled (SPGR) images were used to determine the size and the position of a voxel for MRS data collection. Results: For normal gastric tissue layers, the metabolite peaks of 400-MHz ${1}^H$ MRS were primarily found to be as follows: lipids at 0.9 ppm and 1.3 ppm; alanine at 1.58 ppm; N-acetyl neuraminic acid (sialic acid) at 2.03 ppm; and glutathione at 2.25 ppm in common. The broad and featureless featureless spectral peaks of the 64-MHz MRS were bunched near 0.9, 1.3, and 2.0, and 2.2 ppm in human specimens without respect to layers. In a specimen (Borrmmann type III) with a tubular adenocarcinoma, the resonance peaks were measured at 1.26, 1.36 and 3.22 ppm. All the peak intensities of the spectrum of the normal gastric tissue were reduced, but for gastric tumor tissue layers, the lactate peak split into 1.26 and 1.39 ppm, and the peak intensity of choline at 3.21 ppm was increased. Conclusion: We found that decreasing lipids, an increasing lactate peak that split into two peaks, 1.26 ppm and 1.36 ppm, and an increasing choline peak at 3.22 ppm were markers of tumor invasion into the gastric tissue layers. This study implies that MR spectroscopy can be a useful diagnostic tool for gastric cancer.

  • PDF

Difficulties in Differentiating Cardiac Lymphoma and Metastasis Based on Radiologic Features: Two Case Reports (영상 소견으로 감별이 어려운 원발성 심장 림프종과 심장 전이암: 2예 보고)

  • Hyun Jae Lim;Song Soo Kim;Kye Taek Ahn;Kun Ho Kim;Jin Hwan Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.6
    • /
    • pp.1575-1580
    • /
    • 2021
  • Cardiac tumors are rare diseases with various imaging findings. However, differentiating cardiac tumors based on imaging findings is challenging because of similarities in imaging features. We present two cases of cardiac tumors, including primary cardiac lymphoma and cardiac metastasis, in which the differential diagnosis was difficult.

Head Motion Detection and Alarm System during MRI scanning (MRI 영상획득 중의 피험자 움직임 감지 및 알림 시스템)

  • Pae, Chong-Won;Park, Hae-Jeong;Kim, Dae-Jin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.16 no.1
    • /
    • pp.55-66
    • /
    • 2012
  • Purpose : During brain MRI scanning, subject's head motion can adversely affect MRI images. To minimize MR image distortion by head movement, we developed an optical tracking system to detect the 3-D movement of subjects. Materials and Methods: The system consisted of 2 CCD cameras, two infrared illuminators, reflective sphere-type markers, and frame grabber with desktop PC. Using calibration which is the procedure to calculate intrinsic/extrinsic parameters of each camera and triangulation, the system was desiged to detect 3-D coordinates of subject's head movement. We evaluated the accuracy of 3-D position of reflective markers on both test board and the real MRI scans. Results: The stereo system computed the 3-D position of markers accurately for the test board and for the subject with glasses with attached optical reflective marker, required to make regular head motion during MRI scanning. This head motion tracking didn't affect the resulting MR images even in the environment varying magnetic gradient and several RF pulses. Conclusion: This system has an advantage to detect subject's head motion in real-time. Using the developed system, MRI operator is able to determine whether he/she should stop or intervene in MRI acquisition to prevent more image distortions.

Proteomic analysis of murine peritoneal macrophages after in vitro exposure to static magnetic field

  • Soon, Eun-Jae;Woong, Ko-Dae;Geun, Kwak-Young
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.113-113
    • /
    • 2003
  • A number of studies have demonstrated recently nonthermal interactions of extremely low frequency electromagnetic fields with cellular systems, such as the cells of the immune system. Particular concern came from epidemiological findings, which correlated environmental exposure of human body to weak electromagnetic fields with an elevated risk for developing certain type of leukemias and cancers. Several home/environmental sources generating extremely low frequency electromagnetic fields, such as 50 - 60 Hz high-voltage transmission lines, video display terminals, electric blankets, clinical nuclear magnetic resonance imaging procedures, etc., may interact with the human body. In this study we examined the effects of static magnetic fields (SMF) on the phagocytosis of the murine peritoneal macrophages (C57BL/6). The cells were exposed in vitro for 24 h at 37$^{\circ}C$ to 400 G SMF. The phagocytic activity of peritoneal macrophages was determined with a luminometer. Exposure to the SMF decreased phagocytic activity of murine peritoneal macrophages. In order to provide a more exact mechanism of the phenomenon, we analyzed peritoneal macrophages for alteration in their proteomes. The expression levels of these 5 proteins were increased in the SMF. In total 5 proteins which were differentially expressed in the SMF compared with control group were identified. The expression levels of these 5 proteins were increased in the SMF.

  • PDF

COMPUTATIONAL ANTHROPOMORPHIC PHANTOMS FOR RADIATION PROTECTION DOSIMETRY: EVOLUTION AND PROSPECTS

  • Lee, Choon-Sik;Lee, Jai-Ki
    • Nuclear Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.239-250
    • /
    • 2006
  • Computational anthropomorphic phantoms are computer models of human anatomy used in the calculation of radiation dose distribution in the human body upon exposure to a radiation source. Depending on the manner to represent human anatomy, they are categorized into two classes: stylized and tomographic phantoms. Stylized phantoms, which have mainly been developed at the Oak Ridge National Laboratory (ORNL), describe human anatomy by using simple mathematical equations of analytical geometry. Several improved stylized phantoms such as male and female adults, pediatric series, and enhanced organ models have been developed following the first hermaphrodite adult stylized phantom, Medical Internal Radiation Dose (MIRD)-5 phantom. Although stylized phantoms have significantly contributed to dosimetry calculation, they provide only approximations of the true anatomical features of the human body and the resulting organ dose distribution. An alternative class of computational phantom, the tomographic phantom, is based upon three-dimensional imaging techniques such as magnetic resonance (MR) imaging and computed tomography (CT). The tomographic phantoms represent the human anatomy with a large number of voxels that are assigned tissue type and organ identity. To date, a total of around 30 tomographic phantoms including male and female adults, pediatric phantoms, and even a pregnant female, have been developed and utilized for realistic radiation dosimetry calculation. They are based on MRI/CT images or sectional color photos from patients, volunteers or cadavers. Several investigators have compared tomographic phantoms with stylized phantoms, and demonstrated the superiority of tomographic phantoms in terms of realistic anatomy and dosimetry calculation. This paper summarizes the history and current status of both stylized and tomographic phantoms, including Korean computational phantoms. Advantages, limitations, and future prospects are also discussed.

Accuracy of Ventricular Volume and Ejection Fraction Measured by Gated Tl-201 Perfusion Single Photon Emission Tomography (심전도 게이트 심근관류 Tl-201 SPECT로 측정된 좌심실 기능 및 좌심실 용적의 정확성)

  • Pai, Moon-Sun;Moon, Dae-Hyuk
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.2
    • /
    • pp.94-99
    • /
    • 2005
  • Electrocardiogram-gated single photon omission computed tomography (SPECT) provides valuable information in the assessment of both myocardial perfusion and ventricular function. Tl-201 is a suboptimal isotope for gating. Tl-201 images are more blurred compared with Tc-99m tracers due to the increased amount of scattered photons and use of a smooth filter. The average myocardial count densities are approximately one-half those of conventional technetium tracers. However, Tl-201 is still widely used because of its well-established utility for assessing myocardial perfusion, viability and risk stratification. Gated SPECT with Tl-201 enables us to assess both post-stress and rest left ventricular volume and function. Previous studies with gated Tl-201 SPECT measurements of ejection fraction (EF), end-diastolic volume (EDV), end-systolic volume (ESV) have shown high correlation with first-pass radionuclide angiography, gated blood pool scan, Tc-99m-MIBI gated SPECT, contrast ventriculography, echocardiography, and 3-dimensional magnetic resonance imaging. However, problems related to these studies include few agreement data of EDV and ESV, use of a reference method that is likely to have the same systemic errors (gated Tc-99m-MIBI SPECT), and other technical factors related to the count density of gated SPECT. With optimization of gated imaging protocols and more validation studies, gated Tl-201 SPECT would be an accurate method to provide perfusion and function information in patients with coronary artery disease.

Development of Macrocyclic Ligands for Stable Radiometal Complexes (안정한 방사금속 착물을 위한 거대고리 리간드 개발)

  • Yoo, Jeong-Soo;Lee, Jae-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.4
    • /
    • pp.215-223
    • /
    • 2005
  • Current interest in the regioselective N-functionalization of tetraazacycloalkanes (cyclen and cyclam) stems mainly from their complexes with radioactive metals for applications in diagnostic ($^{64}Cu,\;^{111}In,\;^{67}Ga$) and therapeutic ($^{90}Y$) medicine, and with paramagnetic ions for magnetic resonance imaging ($Gd^{+3}$). Selective methods for the N-substitution of cyclen and cyclam is a crucial step in most syntheses of cyclen and cyclam-based radiometal complexes and bifunctional chelating agents. In addition, mixing different pendent groups to give hetero-substituted cyclen derivatives would be advantageous in many applications for fine-tuning the compound's physical properties. So far, numerous approaches for the regioselective N-substitution of tetraazacycloalkanes and more specifically cyclen and cyclam are reported. Unfortunately, none of them are general and every strategy has its own strong points and drawbacks. Herein, we categorize numerous regioselective N-alkylation methods into three strategies, such as 1) direct substitution of the macrocycle, 2) introductiou of the functional groups prior to cyclization, and 3) protection/iunclionallrationideproteclion. Our discussion is also split into the methods of mono- and tri-functionalization and di-functionalizataion based on number of substituents. At the end, we describe new trials for the new macrocycles which iorm more stable metal complexes with various radiometals, and briefly mention the commercially available tetraazacycloalkanes which are used for the biconjugation of biomolecules.