• Title/Summary/Keyword: nuclear fuel rod

Search Result 402, Processing Time 0.03 seconds

Design and Analyses on the Spacer Grid of the PLWR Fuel (가압경수로 핵연료 지지격자의 기계/구조적 설계 및 분석)

  • Song, Kee-Nam
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.746-751
    • /
    • 2001
  • Design requirements for the nuclear fuel assembly grid of the pressurized water reactor are reviewed from the mechanical/structural point of view. And mechanical/structural tests and numerical analyses on the various spacer grid candidates that has been uniquely designed by KAERI are carried out to find out their mechanical/structural performance. As a result, the results from the numerical analyses are good agreements with test results.

  • PDF

A Study on the Variation of the Fretting Wear Mechanisms under Elastically Deformable Contacts

  • Lee, Young-Ho;Kim, Hyung-Kyu
    • KSTLE International Journal
    • /
    • v.10 no.1_2
    • /
    • pp.27-32
    • /
    • 2009
  • In this study, fretting wear tests of nuclear fuel rods have been performed by using two kinds of spacer grid springs with a concave and a convex shape in room temperature dry and distilled water conditions. The objectives were to examine the variation of the wear mechanism with increasing fretting cycles and to evaluate the difference of the wear debris detachment behavior at each test environment. From the test results, the wear volume of each spring condition increased with increasing fretting cycles regardless of the test environments. However, the wear rate did not show a regular tendency and apparently changed with increasing fretting cycles. This is because the formation of the wear particle layer and/or the variation of the contact condition between the fuel rod and spring surfaces could affect a critical plastic deformation for detaching the wear debris. Based on the test results, the relationship between the wear behavior of each spring shape and test environment condition, and the variation of the surface characteristics are discussed in detail.

X-Ray Tomography Based Simulation Feasibility Analysis of Nuclear Fuel Pellets (핵연료 펠릿의 X-선 단층촬영 기반 시뮬레이션 타당성 해석)

  • Kim, Jae-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.324-329
    • /
    • 2010
  • Fuel rods using in nuclear power plants consist of uranium dioxide pellets enclosed in zirconium alloy(zircaloy) tubes. It is vitally important for the pellet surface to remain free from pits, cracks and chipping defects after it is loaded into the tubes to prevent local hot spots during reactor operation. This paper investigates the feasibility study for detecting surface flaws of pellets contained within nuclear fuel rod through X-ray tomography simulation. Reconstructed images used by parallel and fan-beam filtered back projection method were presented and confirmed the accessibility between simulation data and MPS(missing pellet surface) image data.

FRAPCON analysis of cladding performance during dry storage operations

  • Richmond, David J.;Geelhood, Kenneth J.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.306-312
    • /
    • 2018
  • There is an increasing need in the United States and around the world to move used nuclear fuel from wet storage in fuel pools to dry storage in casks stored at independent spent fuel storage installations or interim storage sites. Under normal conditions, the Nuclear Regulatory Commission limits cladding temperature to $400^{\circ}C$ for high-burnup (>45 GWd/mtU) fuel, with higher temperatures allowed for low-burnup fuel. An analysis was conducted with FRAPCON-4.0 on three modern fuel designs with three representative used nuclear fuel storage temperature profiles that peaked at $400^{\circ}C$. Results were representative of the majority of US light water reactor fuel. They conservatively showed that hoop stress remains below 90 MPa at the licensing temperature limit. Results also show that the limiting case for hoop stress may not be at the highest rod internal pressure in all cases but will be related to the axial temperature and oxidation profiles of the rods at the end of life and in storage.

Application of POD reduced-order algorithm on data-driven modeling of rod bundle

  • Kang, Huilun;Tian, Zhaofei;Chen, Guangliang;Li, Lei;Wang, Tianyu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.36-48
    • /
    • 2022
  • As a valid numerical method to obtain a high-resolution result of a flow field, computational fluid dynamics (CFD) have been widely used to study coolant flow and heat transfer characteristics in fuel rod bundles. However, the time-consuming, iterative calculation of Navier-Stokes equations makes CFD unsuitable for the scenarios that require efficient simulation such as sensitivity analysis and uncertainty quantification. To solve this problem, a reduced-order model (ROM) based on proper orthogonal decomposition (POD) and machine learning (ML) is proposed to simulate the flow field efficiently. Firstly, a validated CFD model to output the flow field data set of the rod bundle is established. Secondly, based on the POD method, the modes and corresponding coefficients of the flow field were extracted. Then, an deep feed-forward neural network, due to its efficiency in approximating arbitrary functions and its ability to handle high-dimensional and strong nonlinear problems, is selected to build a model that maps the non-linear relationship between the mode coefficients and the boundary conditions. A trained surrogate model for modes coefficients prediction is obtained after a certain number of training iterations. Finally, the flow field is reconstructed by combining the product of the POD basis and coefficients. Based on the test dataset, an evaluation of the ROM is carried out. The evaluation results show that the proposed POD-ROM accurately describe the flow status of the fluid field in rod bundles with high resolution in only a few milliseconds.

Input Shaping Control of a Refueling System Operating in Water (입력성형기법을 이용한 핵연료이송시스템의 수중이동 시의 진동제어)

  • Piao, Mingxu;Shah, Umer Hameed;Jeon, Jae Young;Hong, Keum-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.4
    • /
    • pp.402-407
    • /
    • 2014
  • In this paper, residual sway control of objects that are moved underwater is investigated. The fuel transfer system in a nuclear power plant transfers the nuclear fuel rods underwater. The research on the dynamics of the loads transferred in different mediums (water and air) and their control methods have not been fully developed yet. The attenuation characteristics of the fuel transfer system have been studied to minimize its residual vibration by considering the effects of hydrodynamic forces acting on the fuel rod. First, a mathematical model is derived for the underwater fuel transfer system, and then experiments have been conducted to study the dynamic behavior of the rod while it travels underwater. Lastly, the residual vibration at the end point is minimized using the input shaping technique.