• Title/Summary/Keyword: nuclear fuel fretting

Search Result 63, Processing Time 0.088 seconds

Set-up of Mechanical/Structural Test Facilities on the Spacer Grid of the PLWR Fuel (가압경수로 핵연료 지지격자의 기계/구조적 시험장치 구축)

  • Song, Kee-Nam;Yoon, K.H;Kang, H.S;Kim, H.K
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.355-360
    • /
    • 2001
  • Design requirements for the nuclear fuel assembly grid of the pressurized light water reactor(PLWR) are scrutinized from the mechanical/structural point of view. As a result of the scrunity, mechanical/structural test facilities on the spacer grid of the PLWR Fuel are set up in KAERI to find out their mechanical/structural performance.

  • PDF

Analysis of Slip Displacement and Wear in Oscillating Tube supported by Plate Springs (튜브진동 시 판스프링 지지부의 미끄럼변위와 마멸 분석)

  • Kim Hyung-Kyu;Lee Young-Ho;Song Ju-Sun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.41-49
    • /
    • 2003
  • Tube oscillation behaviour is experimentally investigated for the study on the fuel rod fretting that is caused by the flow-induced vibration in nuclear reactor. The experiment was conducted in all at room temperature. The specimen of tube assembly was supported by plate springs which simulated the spacer grids and fuel rods of a fuel assembly. To investigate the influence of contact condition between the grids and rods, normal load of 10 and 5 N, gaps of 0.1 and 0.3 mm were applied. The range of the oscillation at the center of the fuel rod specimen was varied as 0.2, 0.3 and 0.4 mm to simulate the fuel rod vibration due to flow. Displacements near the contact were measured with four displacement sensors during the tube oscillation. As results, the shape of oscillation (phase) varied depending on the contact condition. The oscillation displacement increased considerably from the contact to gap condition. The displacement increased further as the gap size increased. It is regarded that the spring shape influences the tube oscillation behaviour. Simple calculation showed that the slip displacement was very small. Therefore, cumulative damage concept is necessary for the fuel rod wear. The mechanism of plowing is thought required to explain the severe wear in the case of gap existence.

  • PDF

Critical Velocity of Fluidelastic Vibration in a Nuclear Fuel Bundle

  • Kim, Sang-Nyung;Jung, Sung-Yup
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.8
    • /
    • pp.816-822
    • /
    • 2000
  • In the core of the nuclear power plant of PWR, several cases of fuel failure by unknown causes have been experienced for various fuel types. From the common features of the failure pattern, failure lead time, flow conditions, and flow induced vibration characteristics in nuclear fuel bundles, it is deduced that the fretting wear failure of the fuel rod at the spacer grid position is due to the fluidelastic vibration. In the past, fluidelastic vibration was simulated by quasi -static semi-analytical model, so called the static model, which could not account for the interaction between the rods within a bundle. To overcome this defect and to provide for more flexibilities applicable to the fuel bundle, Tanaka's unsteady model was modified to accomodate the geometrical differences and governing parameter changes during the operations such as the number of rods, pitch to diameter ratio (P/D), spring force, damping coefficient, etc. The critical velocity was calculated by solving the governing equations with the MATLAB code. A comparison between the estimated critical velocity and the test result shows a good agreement. Finally, the level of decrease of the critical velocity due to the reduction in the spring force and reduced damping coefficient due to the radiation exposure is also estimated.

  • PDF

MODAL TESTING AND MODEL UPDATING OF A REAL SCALE NUCLEAR FUEL ROD

  • Park, Nam-Gyu;Rhee, Hui-Nam;Moon, Hoy-Ik;Jang, Young-Ki;Jeon, Sang-Youn;Kim, Jae-Ik
    • Nuclear Engineering and Technology
    • /
    • v.41 no.6
    • /
    • pp.821-830
    • /
    • 2009
  • In this paper, modal testing and finite element modeling results to identify the modal parameters of a nuclear fuel rod as well as its cladding tube are discussed. A vertically standing full-size cladding tube and a fuel rod with lead pellets were used in the modal testing. As excessive flow-induced vibration causes a failure in fuel rods, such as fretting wear, the vibration level of fuel rods should be low enough to prevent failure of these components. Because vibration amplitude can be estimated based on the modal parameters, the dynamic characteristics must be determined during the design process. Therefore, finite element models are developed based on the test results. The effect of a lumped mass attached to a cladding tube model was identified during the finite element model optimization process. Unlike a cladding tube model, the density of a fuel rod with pellets cannot be determined in a straightforward manner because pellets do not move in the same phase with the cladding tube motion. The density of a fuel rod with lead pellets was determined by comparing natural frequency ratio between the cladding tube and the rod. Thus, an improved fuel rod finite element model was developed based on the updated cladding tube model and an estimated fuel rod density considering the lead pellets. It is shown that the entire pellet mass does not contribute to the fuel rod dynamics; rather, they are only partially responsible for the fuel rod dynamic behavior.

Verification Test and Model Updating for a Nuclear Fuel Rod with Its Supporting Structure

  • H. S. Kang;K. N. Song;Kim, H. K.;K. H. Yoon;Y. H. Jung
    • Nuclear Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.73-82
    • /
    • 2001
  • Pressurized water reactor(PWR) fuel rods. which are continuously supported by a spring system called a spacer grid(SG), are exposed to reactor coolant at a flow velocity of up to 6-8 m/s. It is known that the vibration of 3 fuel rod is generated by the coolant flow, a so-called flow-induced-vibration(FIV), and the relative motion induced by the FIV between the fuel rod and the SG can wear away the surface of the fuel rod, which occasionally leads to its fretting failure. It is, therefore, important to understand the vibration characteristics of the fuel rod and reflect that in its design. In this paper, vibration analyses of the fuel rod with two different SGs were performed using both analytical and experimental methods. Updating of the finite element(FE) model using the measured data was performed in order to enhance confidence in the FE model of fuel rods supported by an SG. It was found that the modal parameters are very sensitive to the spring constant of the SG.

  • PDF

Development of CANDU Spent Fuel Bundle Inspection System and Technology (중수로 사용후연료 건전성 검사장비 개발)

  • Kim, Yong-Chan;Lee, Jong-Hyeon;Song, Tae-Han
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.1
    • /
    • pp.31-39
    • /
    • 2013
  • Nuclear fuel can be damaged under unexpected circumstances in a nuclear reactor. Fuel rod failure can be occurred due to debris fretting or excessive hydriding or PCI (Pellet-to-clad Interaction) etc. It is important to identify the causes of such failed fuel rods for the safe operation of nuclear power plants. If a fuel rod failure occurs during the operation of a nuclear power plant, the coolant water is contaminated by leaked fission products, and in some case the power level of the plant may be lowered or the operation stopped. In addition, all spent fuels must be transferred to a dry storage. But failed fuel can not be transferred to a dry storage. Therefore, the purpose of this study is to develop a system which is capable of inspecting whether the spent fuel in the storage pool is failed or not. The sipping technology is to analyze the leakage of fission products in state of gas and liquid. The failed fuel inspection system with gamma analyzer has successfully demonstrated that the system is enough to find the failed fuel at Wolsong plant.

A Study on Third Body Abrasion in the Small Clearance Region Adjacent to the Contact Area

  • Kim, Hyung-Kyu;Lee, Young-Ho;Heo, Sung-Pil;Jung, Youn-Ho
    • KSTLE International Journal
    • /
    • v.4 no.1
    • /
    • pp.8-13
    • /
    • 2003
  • Abrasion in fretting wear mechanism is studied experimentally with the specimens of two different shapes of spacer grid spring and fuel tubes of a nuclear fuel. Reciprocating sliding wear test has been carried out in the environment of air and water at room temperature. Especially, third body abrasion is referred to for explaining the wear region expansion found during the slip displacement increase with constant normal contact farce. It is found that the expansion behaviour depends on the contact shape. The small clearance between the tube and spring seems to be the preferable region of the wear particle accumulation, which causes third body abrasion of the non-contact area. Even in water environment the third body abrasion occurs apparently. Since the abrasion on the clearance contributes wear volume, the influence of the contact shape on the severity of third body abrasion should be considered to improve the grid spring design in the point of restraining wear damage of a nuclear fuel.

Relationship between Spring Shapes and the Ratio of wear Volume to the Worn Area in Nuclear Fuel Fretting

  • Lee, Young-Ho;Kim, Hyung-Kyu;Jung, Youn-Ho
    • KSTLE International Journal
    • /
    • v.4 no.1
    • /
    • pp.31-36
    • /
    • 2003
  • Sliding and impact/sliding wear test in room temperature air and water were performed to evaluate the effect of spring shapes on the wear mechanism of a fuel rod. The main focus was to quantitatively compare the wear behavior of a fuel rod with different support springs (i.e. two concaves, a convex and a flat shape) using a ratio of wear volume to worn area (De)-The results indicated that the wear volumes at each spring condition were varied with the change of test environment and loading type. However, the relationship between the wear volume and worn area was determined by only spring shape even though the wear tests were carried out at different test conditions. From the above results, the optimized spring shape which has more wear-resistant could be determined using the analysis results of the relation between the variation of De and worn surface observations in each test condition.

Performance Test on the KAERI Designed Spacer Grids for the Advanced PWR (경수로용 고유 지지격자의 성능시험)

  • Song, Gi-Nam;Yun, Gyeong-Ho;Gang, Heung-Seok;Kim, Hyeong-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.431-437
    • /
    • 2003
  • KAERI has contrived 14 kinds of spacer grid shapes of its own since 1997 and applied for Korean and US patents. To date. KAERI has obtained US and Korean patents for 6 kinds of spacer grid shapes among them. Tn this study. performance test on two spacer grid shapes that are assumed to be the most effective candidates for the spacer grid of the next generation nuclear fuel in Korea was carried Qui through the mechanical/structural test and analysis. The test result has shown thai the performances of the candidates are better or not worse than that of the current spacer grid.

  • PDF

경수로 핵연료집합체의 모드해석 및 유동시험 평가

  • 전상윤;김용환;전경락;김재원
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.46-51
    • /
    • 1997
  • 최근 경수로 핵연료 손상 원인 중의 하나인 연료봉 마모(Fretting Wear)가 지지격자의 스프링력 저하뿐만 아니라 원자로 냉각재 유동에 기인한 집합체 진동(Self-excited Fuel Assembly Vibration)에 의해 유발될 수 있는 것으로 밝혀져 해외 연료공급자들은 새로운 연료개발시 집합체 유동시험을 수행하여 냉각재 유동에 의한 집합체 진동 여부를 확인하고 있다. 본 연구에서는 경수로 핵연료집합체에 대한 모드해석 및 진동시험으로부터 고유진동수 및 진동모드형태를 구하여 모의 집합체 유동시험 결과와 비교 평가하였고 냉각재 유동에 의해 과도한 집합체 진동이 발생됨을 확인하였으며 가연성흡수봉집합체를 삽입한 경우에 대한 유동시험 결과와도 비교하였다. 또한, 이들 집합체의 진동 변위량과 손상 연료의 마모량 분포의 상관성을 비교 평가하였다.

  • PDF