• Title/Summary/Keyword: nuclear fuel channel

Search Result 136, Processing Time 0.071 seconds

Radiation damage to Ni-based alloys in Wolsong CANDU reactor environments

  • Kwon, Junhyun;Jin, Hyung-Ha;Lee, Gyeong-Geun;Park, Dong-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.915-921
    • /
    • 2019
  • Radiation damage due to neutrons has been calculated in Ni-based alloys in Wolsong CANDU reactor environments. Two damage parameters are considered: displacement damage, and transmutation gas production. We used the SPECTER and SRIM computer codes in quantifying radiation damage. In addition, damage caused by Ni two-step reactions was considered. Estimations were made for the annulus spacers in a CANDU reactor that are located axially along a fuel channel and made of Inconel X-750. The calculation results indicate that the transmutation gas production from the Ni two-step reactions is predominant as the effective full power year increases. The displacement damage due to recoil atoms produced from Ni two-step reactions accounts for over 30% out of the total displacement damage.

Systems Engineering Approach to the Heat Transfer Analysis of PLUS 7 Fuel Rod Using ANSYS FEM Code

  • Park, Sang-Jun;Mutembei, Mutegi Peter;Namgung, Ihn
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.13 no.1
    • /
    • pp.33-39
    • /
    • 2017
  • This paper describes the system engineering approach for the heat transfer analysis of plus7 fuel rod for APR1400 using, a commercial software, ANSYS. The fuel rod is composed of fuel pellets, fill gas, end caps, plenum spring and cladding. The heat is transferred from the pellet outward by conduction through the pellet, fill gas and cladding and further by convection from the cladding surface to the coolant in the flow channel. The goal of this paper is to demonstrate the temperature and heat flux change from the fuel centerline to the cladding surface when having maximum fuel centerline temperature at 100% power. This phenomenon is modelled using the ANSYS FEM code and analyzed for steady state temperature distribution across the fuel pellet and clad and the results were compared to the standard values given in APR1400 SSAR. Specifically the applicability of commercial software in the evaluation of nuclear fuel temperature distribution has been accounted. It is note that special codes have been used for fuel rod mechanical analysis which calculates interrelated effects of temperature, pressure, cladding elastic and plastic behavior, fission gas release, and fuel densification and swelling under the time-varying irradiation conditions. To satisfactorily meet this objective we apply system engineering methodologies to formulate the process and allow for verification and validation of the results acquired. The close proximity of the results obtained validated the accuracy of the FEM analysis of the 2D axisymmetric model and 3D model. This result demonstrated the validity of commercial software instead of proprietary in-house code that is more costly to develop and maintain.

PMCR-A Power Mapping and Calibration Routing for 600 MWe CANDU-PHW Reactors

  • Oh, Se-Ki;G.Kugler
    • Nuclear Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.275-286
    • /
    • 1979
  • In 600 MWe CANDU-PHW reactors PMCR will be used on-site for calibration of the regional overpower system. PMCR will be executed off-line in one of the station computers. The program calculates accurate channel power maps by incorporating a fuel turnup dependent flux to power conversion algorithm. Fuel turnup is calculated by PMCR, hence it is independent of other software. Extensive comparisons with the uniform flux/power conversion approximations were made. Significant improvements in power mapping accuracy are achieved with PMCR.

  • PDF

Nuclear Design Analysis of Wolsung-1 CANDU-PHW Nuclear Generating Station

  • Chung, Chang-Hyun;Oh, Keun-Bae;Kim, C.H.
    • Nuclear Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.203-213
    • /
    • 1978
  • A combination of computer codes such as LATREP, HWR, AXAV and CITATION is utilized in an attempt to analyze the nuclear design characteristics of the CANDU-PHWR of the Wolsung Unit 1. The major nuclear properties to be computed are tile lattice properties of CANDU fuel channel and the core channel power distribution. The computed results are compared with the PSR documentation for the Wolsung reactor. The observed discrepancies between our computation and the PSB values are discussed in terms of incomplete information on the description of the core configuration in the PSR and the different calculation methods.

  • PDF

Conceptual design of a high neutron flux research reactor core with low enriched uranium fuel and low plutonium production

  • Rahimi, Ghasem;Nematollahi, MohammadReza;Hadad, Kamal;Rabiee, Ataollah
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.499-507
    • /
    • 2020
  • Research reactors for radioisotope production, fuel and material testing and research activities are designed, constructed and operated based on the society's needs. In this study, neutronic and thermal hydraulic design of a high neutron flux research reactor core for radioisotope production is presented. Main parameters including core excess reactivity, reactivity variations, power and flux distribution during the cycle, axial and radial power peaking factors (PPF), Pu239 production and minimum DNBR are calculated by nuclear deterministic codes. Core calculations performed by deterministic codes are validated with Monte Carlo code. Comparison of the neutronic parameters obtained from deterministic and Monte Carlo codes indicates good agreement. Finally, subchannel analysis performed for the hot channel to evaluate the maximum fuel and clad temperatures. The results show that the average thermal neutron flux at the beginning of cycle (BOC) is 1.0811 × 1014 n/㎠-s and at the end of cycle (EOC) is 1.229 × 1014 n/㎠-s. Total Plutonium (Pu239) production at the EOC evaluated to be 0.9487 Kg with 83.64% grade when LEU (UO2 with 3.7% enrichment) used as fuel. This designed reactor which uses LEU fuel and has high neutron flux and low plutonium production could be used for peaceful nuclear activities based on nuclear non-proliferation treaty concepts.

A SENSITIVITY STUDY ON NEUTRONIC PROPERTIES OF DUPIC FUEL

  • Park, Hangbok;Roh, Gyu-Hog
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.124-129
    • /
    • 1998
  • A sensitivity study has been done to determine the composition of DUPIC fuel from the viewpoint of neutronics fuel design. The spent PWR fuel compositions were generated and fissile contents adjusted by blending fresh uranium after mixing two spent PWR fuel assemblies. The $^{239}$ Pu and $^{235}$ U enrichments of DUPIC fuel were adjusted by controlling the amount of fresh uranium feed and the ratio of slightly enriched and depleted uranium in the fled uranium. Based on the material balance calculation, it is recommended that DUPIC fuel composition be such that spent PWR fuel utilization is more than 90%.. A sensitivity study on the temperature reactivity coefficient of DUPIC fuel has shown that it is desirable to increase the $^{239}$ Pu and $^{235}$ U contents to reduce both the fuel and coolant temperature coefficients. On the other hand, refueling simulations of the DUPIC core have shown that the channel power peaking factor, which is a measure of the reactor trip margin, increases with the total fissile content. Considering these neutronic characteristics of the DUPIC fuel, il is recommended to have enrichments of 0.45 and 1.00 wt% for $^{239}$ Pu and $^{235}$ U, respectively.

  • PDF

MNSR transient analysis using the RELAP5/Mod3.2 code

  • Dawahra, S.;Khattab, K.;Alhabit, F.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1990-1997
    • /
    • 2020
  • To support the safe operation of the Miniature Neutron Source Reactor (MNSR), a thermo-hydraulic transient model using the RELAP5/Mod3.2 code was simulated. The model was verified by comparing the results with the measured and the previously calculated data. The comparisons consisted of comparing the MNSR parameters under normal constant power operation and reactivity insertion transients. Reactivity Insertion Accident (RIA) for three different initial reactivity values of 3.6, 6.0, and 6.53 mk have been simulated. The calculated peaks of the reactor power, fuel, clad and coolant temperatures in hot channel were calculated in this model. The reactor power peaks were: 103 kW at 240 s, 174 kW at 160 s and 195 kW at 140 s, respectively. The fuel temperature reached its maximum value of 116 ℃ at 240 s, 124 ℃ at 160 s and 126 ℃ at 140 s respectively. These calculation results ensured the high inherently safety features of the MNSR under all phases of the RIAs.

Large eddy simulation on the turbulent mixing phenomena in 3×3 bare tight lattice rod bundle using spectral element method

  • Ju, Haoran;Wang, Mingjun;Wang, Yingjie;Zhao, Minfu;Tian, Wenxi;Liu, Tiancai;Su, G.H.;Qiu, Suizheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1945-1954
    • /
    • 2020
  • Subchannel code is one of the effective simulation tools for thermal-hydraulic analysis in nuclear reactor core. In order to reduce the computational cost and improve the calculation efficiency, empirical correlation of turbulent mixing coefficient is employed to calculate the lateral mixing velocity between adjacent subchannels. However, correlations utilized currently are often fitted from data achieved in central channel of fuel assembly, which would simply neglect the wall effects. In this paper, the CFD approach based on spectral element method is employed to predict turbulent mixing phenomena through gaps in 3 × 3 bare tight lattice rod bundle and investigate the flow pulsation through gaps in different positions. Re = 5000,10000,20500 and P/D = 1.03 and 1.06 have been covered in the simulation cases. With a well verified mesh, lateral velocities at gap center between corner channel and wall channel (W-Co), wall channel and wall channel (W-W), wall channel and center channel (W-C) as well as center channel and center channel (C-C) are collected and compared with each other. The obvious turbulent mixing distributions are presented in the different channels of rod bundle. The peak frequency values at W-Co channel could have about 40%-50% reduction comparing with the C-C channel value and the turbulent mixing coefficient β could decrease around 25%. corrections for β should be performed in subchannel code at wall channel and corner channel for a reasonable prediction result. A preliminary analysis on fluctuation at channel gap has also performed. Eddy cascade should be considered carefully in detailed analysis for fluctuating in rod bundle.