• Title/Summary/Keyword: nuclear facilities

Search Result 747, Processing Time 0.021 seconds

Application of Cyclone to Removal of Hot Particulate in Hot Cell (Hot Cell 내의 고방사능 분진 제거를 위한 사이클론 적용 실험)

  • Kim Gye Nam;Lee Sung Yeol;Won Hui Jun;Jung Chong Hun;Oh Won Zin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.1
    • /
    • pp.67-75
    • /
    • 2005
  • The size and main ingredient of hot particulate generated during the nuclide experiment in hot cells of nuclear facilities were 0.5300 $\mu$m and UO$\_2$. A cyclone filter equipment which consists of a cyclone and Bag/HEPA filter was devised to remove hot particulate generated during the nuclide experiment in hot cells of nuclear facilities. The experimental conditions to maximize the collection efficiency of hot particulate were suggested through experiments done with the cyclone filter equipment. With the large size of simulated particulate, the collection efficiency of the particulate was high. When the size of simulated particulate was more than 5 $\mu$m, the collection efficiency of the particulate was more than $80\%$ and when the size of simulated particulate was less than 1.0 urn, the collection efficiency decreased by less than $70\%$. If the inflow velocity of simulated particulate was increased, the collection efficiency of the particulate was also increased. When the inflow velocity of simulated particulate was more than 12m/sec, the collection efficiency was higher than $70\%$, but after 17 m/sec inflow velocity, no change observed. The collection efficiency of the simulated particulate can be enhanced with the length of vortex finder inside the chamber. With the length of vortex finder, 7.2cm, the observed collection efficiency of the particulate was the maximum. Moreover, when the sub-cone was attached under the cyclone, the collection efficiency of cyclone increased $2\%$. It was found that effect by attachment of sub-cone was not serious.

  • PDF

Optimum Remediation Conditions of Vertical Electrokinetic-Flushing Equipment to Decontaminate a Radioactive Soil (방사성토양 복원을 위한 수직형 동전기-세정장치의 최적제염조건 도출)

  • Kim, Gye-Nam;Yang, Byeong-Il;Moon, Jei-Kwon;Lee, Kune-Woo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.3
    • /
    • pp.153-160
    • /
    • 2009
  • Vertical electrokintic-flushing remediation equipment was developed for the remediation of a radioactive soil near nuclear facilities. An optimum reagent was selected to decontaminate the radioactive soil near nuclear facilities with the developed vertical electrokintic-flushing remediation equipment, and the optimum remediation conditions were established to obtain a higher remediation efficiency. Namely, acetic acid was selected as an optimum reagent due to its higher remediation efficiency. When the electrokinetic remediation and the electrokinetic-flushing remediation results were compared, the removal efficiency of 4.6% and the soil waste solution volume of 1.5 times were increased in the electrokinetic remediation. When the potential gradient within an electrokinetic soil cell was increased by two times (4.0 V/cm), the removal efficiencies of $Co^{2+}$ and $Cs^+$ were increased by about 4.3%($Co^{2+}$ : 98.9%, $Cs^+$ : 96.7%). Also, when the reagent concentration was increased from 0.01M to 0.05M, the removal efficiency of $Co^{2+}$ was increased but that of $Cs^+$ was decreased. Therefore, the optimum remediation conditions were that the acetic concentration was $0.01M{\sim}0.05M$, the potential gredient was 4 V/cm, the injection of reagent 2.4ml/g, and the remediation period was 20days.

  • PDF

The Experience of Inservice Inspection for Yonggwang Nuclear Power Plant Unit 6 (영광 원자력발전소 6호기 가동중검사 수형 경험)

  • Kim, Young-Ho;Nam, Min-Woo;Yang, Seung-Han;Yoon, Byung-Sik;Kim, Yong-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.4
    • /
    • pp.384-389
    • /
    • 2004
  • As the increase of the operation year of nuclear power plants, the probabilities of the degradation of the major facilities and materials in the nuclear power plants are increased. The integrity of those facilities shall be monitored and verified by the non-destructive examination methods with the regulation codes, so called inservice inspection(ISI). The ISI of Yonggwang unit 6 was performed in four different parts, 1) non-destructive examinations for the components, piping weldments and structures, 2) automated ultrasonic examinations for pressure vessels, 3) visual examinations for the interior structures of the reactor, 4) eddy current examinations for the steam generator tubes. As the results, there was no severe indication and all detected indications were evaluated as non-relavent. Especially for the examinations of the piping weldments, PD(Performance Demonstration) was applied as a W examination method defined in the 1995 edition of ASME Code Sec. XI. The implementation of the PD for the piping weld results in an improvement of the reliability of the UT examinations.

Strong Ground Motion Simulation at Seismic Stations of Metropolises in South Korea by Scenario Earthquake on the Causative Fault of the 2016 Gyeongju Earthquake (2016년 경주지진 유발단층 시나리오 지진에 의한 국내 광역 도시 지진관측소에서의 강진동 모사)

  • Choi, Hoseon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.59-65
    • /
    • 2020
  • The empirical Green's function method is applied to the foreshock and the mainshock of the 2016 Gyeongju earthquake to simulate strong ground motions of the mainshock and scenario earthquake at seismic stations of seven metropolises in South Korea, respectively. To identify the applicability of the method in advance, the mainshock is simulated, assuming the foreshock as the empirical Green's function. As a result of the simulation, the overall shape, the amplitude of PGA, and the duration and response spectra of the simulated seismic waveforms are similar with those of the observed seismic waveforms. Based on this result, a scenario earthquake on the causative fault of Gyeongju earthquake with a moment magnitude 6.5 is simulated, assuming that the mainshock serves as the empirical Green's function. As a result, the amplitude of PGA and the duration of simulated seismic waveforms are significantly increased and extended, and the spectral amplitude of the low frequency band is relatively increased compared with that of the high frequency band. If the empirical Green's function method is applied to several recent well-recorded moderate earthquakes, the simulated seismic waveforms can be used as not only input data for developing ground motion prediction equations, but also input data for creating the design response spectra of major facilities in South Korea.

Measurement Mothod for Internal Defect of Pipe by Using Phase Shifting Real-Time Holographic Interferometry (위상이동 실시간 홀로그래픽 간섭법을 이용한 파이프의 내부결함 측정법)

  • Kang, Young-June;Moon, Sang-Joon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.68-75
    • /
    • 1996
  • More accurate inspection method for facilities of nuclear power plants is required to guarantee the continuous and stable energy supply. The portion of inspection for pipes and pressure vessels is relatively big in the power plants. Conventional inspection methods using ultrasonic wave, x-ray and eddy current for nondestructive testing in nuclear power plants have been performed as the method of contact with objects to be inspected. With this reason these methods have been taken relatively much time, money and manpower. And the area to be inspected is limited by the location of probe or film. These difficulties make the inspection into a time-consuming work. We propose an optical defect detection method using phase shifting realtime holographic interferometry. This method has an advantage that the inspection can be performed at a time for relatively wide area illuminated by the laser beam, a coherent light source and can help an inspector recognize not only defects but also the high stressed areas. In this paper we show that the quantitative measurement using holographic interferometry and image processing for defect in pressure vessels is possible.

  • PDF

Study on the Oxidation Treatment of Nanoparticles for the Critical Heat Flux (임계열유속 향상을 위한 나노물질의 산화처리에 대한 연구)

  • Kim, Woo-Joong;Jeon, Yong-Han;Kim, Nam-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.6
    • /
    • pp.39-49
    • /
    • 2017
  • Pool boiling, one of the key thermal-hydraulics phenomena, has been widely studied for improving heat transfer efficiencies and safety of nuclear power plants, refrigerating systems, solar-collector heat pipes, and other facilities and equipments. In the present study, the critical heat flux (CHF) and heat-transfer coefficients were tested under the pool-boiling state using graphene M-5 and M-15 nanofluids as well as oxidized graphene M-5 nanofluid. The results showed that the highest CHF increase for both graphene M-5 and M-15 was at the 0.01% volume fraction and, moreover, that the CHF-increase ratio for small-diameter graphene M-5 was higher than that for large-diameter graphene M-15. Also at the 0.01% volume fraction, the oxidized graphene M-5 nanofluid showed a 41.82%-higher CHF-increase ratio and a 26.7%-higher heat-transfer coefficient relative to the same nanofluid without oxidation treatment at the excess temperature where the CHF of distilled water occurs.

Dose assessment applied with the specific data of Young-gwang area for clearance by landfill (영광지역 특성자료를 적용한 매립 자체처분 피폭선량 평가)

  • 임용규;이지훈;양호연;신상운
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.497-502
    • /
    • 2003
  • Landfill is an widely applied alternative for clearance of non-contaminated waste or slightly contaminated waste generated from nuclear facilities. In this study, exposure dose is estimated for a worker and a resident at the landfill area in Young-gwang nuclear power plant. Based on evaluated dose, clearance concentrations of each radionuclide are determinated for dose criteria of 10 $\muSv/y$. The results of age-dependent dose are 1.02 $\muSv$ per year for resident and 0.471 $\muSv$ per year for worker. Clearance concentrations for each radionuclide are evaluated from $1.33{\times}10_{-1}$ Bq per gram to $2.85{\times}10^2$ Bq per gram.

  • PDF

PROLONGATION OF THE BOR-60 REACTOR OPERATION

  • IZHUTOV, ALEXEY L.;KRASHENINNIKOV, YURI M.;ZHEMKOV, IGOR Y.;VARIVTSEV, ARTEM V.;NABOISHCHIKOV, YURI V.;NEUSTROEV, VICTOR S.;SHAMARDIN, VALENTIN K.
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.253-259
    • /
    • 2015
  • The fast neutron reactor BOR-60 is one of the key experimental facilities worldwide to perform large-scale tests of fuel, absorbing, and structural materials for advanced reactors. The BOR-60 reactor was put into operation in December 1969, and by the end of 2014 it had been operating on power for ~265,000 hours. BOR-60 still demonstrates potential capabilities to extend the lifetime of sodium-cooled fast reactors. The BOR-60 lifetime should have expired at the end of 2014. Over the past few years, a great scope of work has been performed to justify the possibility of extending its lifetime. The work included inspection of the equipment conditions, calculations and experimental research on operating parameters and the conditions of nonremovable components, investigation of the structural material samples after their long-term operation under irradiation, etc. Based on the results of the work performed, the residual lifetime was evaluated and the reactor operator made a decision to extend the lifetime period of the BOR-60 reactor. After considering both a set of documents about the reactor conditions and the positive decision of independent experts, the Regulatory Authority of the Russian Federation extended the BOR-60 operating license up to 2020.

A STUDY OF THE PRESSURE SOLUTION AND DEFORMATION OF QUARTZ CRYSTALS AT HIGH pH AND UNDER HIGH STRESS

  • Choi, Jung-Hae;Seo, Yong-Seok;Chae, Byung-Gon
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.53-60
    • /
    • 2013
  • Bentonite is generally used as a buffer material in high-level radioactive waste disposal facilities and consists of 50% quartz by weight. Quartz strongly affects the behavior of bentonite over very long periods. For this reason, quartz dissolution experiment was performed under high-pressure and high-alkalinity conditions based on the conditions found in a high-level radioactive waste disposal facility located deep underground. In this study, two quartz dissolution experiments were conducted on 1) quartz beads under low-pressure and high-alkalinity conditions and 2) a single quartz crystal under high-pressure and high-alkalinity conditions. Following the experiments, a confocal laser scanning microscope (CLSM) was used to observe the surfaces of experimental samples. Numerical analyses using the finite element method (FEM) were also performed to quantify the deformation of contact area. Quartz dissolution was observed in both experiments. This deformation was due to a concentrated compressive stress field, as indicated by the quartz deformation of the contact area through the FEM analysis. According to the numerical results, a high compressive stress field acted upon the neighboring contact area, which showed a rapid dissolution rate compared to other areas of the sample.

Generation of Floor Response Spectra Considering Coupling Effect of Primary and Secondary System (부구조시스템의 연계 효과를 고려한 구조물의 층응답 스펙트럼 생성)

  • Cho, Sung Gook;Gupta, Abhinav
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.179-187
    • /
    • 2020
  • Seismic qualification of equipment including piping is performed by using floor response spectra (FRS) or in-structure response spectra (ISRS) as the earthquake input at the base of the equipment. The amplitude of the FRS may be noticeably reduced when obtained from coupling analysis because of interaction between the primary structure and the equipment. This paper introduces a method using a modal synthesis approach to generate the FRS in a coupled primary-secondary system that can avoid numerical instabilities or inaccuracies. The FRS were generated by considering the dynamic interaction that can occur at the interface between the supporting structure and the equipment. This study performed a numerical example analysis using a typical nuclear structure to investigate the coupling effect when generating the FRS. The study results show that the coupling analysis dominantly reduces the FRS and yields rational results. The modal synthesis approach is very practical to implement because it requires information on only a small number of dynamic characteristics of the primary and the secondary systems such as frequencies, modal participation factors, and mode shape ordinates at the locations where the FRS needs to be generated.