• Title/Summary/Keyword: nuclear body

Search Result 987, Processing Time 0.026 seconds

Evaluating the Usability of Medical Body Wrap in Whole Body Bone Scan (전신 뼈 검사에서 의료용 신체 고정구의 유용성 평가)

  • Dong-Oh Shim;Woo-Young Jung;Jae-Kwang Ryu;Cheol-Hong Park;Yoon-Jae Kim
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.28 no.1
    • /
    • pp.49-56
    • /
    • 2024
  • Purpose: When performing nuclear medicine examinations, body wraps or plastic supports are used to support and immobilize the patient's upper extremities to prevent patient safety accidents. However, the existing plastic supports compromised patient and staff safety, including finger entrapment and falls. Moreover, the body wrap provided by manufacturers compromised image quality such as upper extremities cutoff during whole body bone scan. Therefore, a new design of body wrap was developed to improve the issue, and this study aims to evaluate the usability of this medical body wrap. Materials and Methods: To evaluate the usability of the newly designed medical body wrap, a quality assessment of whole body bone scan images and a user satisfaction survey were conducted. Adult patients (male:female=129:152, age: 60.3±12.4 years, BMI: 24.0±4.2) aged 16 years or older who underwent a whole body bone scan during two periods: June to July 2022 (before improvement, n=139) and June to July 2023 (after improvement, n=142) were randomly selected for image quality evaluation. Five radiotechnologists visually evaluated the posterior view of the whole body bone image, including the left and right elbow (2 points), arm (2 points), whether the hand is extended (2 points), whether the hand is included (2 points), and the number of visible fingers (10 points), with a total of 18 points, which were converted to 100 points and analyzed for difference before and after improvement using an independent sample t-test. The user satisfaction questionnaire was evaluated using a 5-point Likert scale among 16 radiotechnologists from three general hospitals who experienced the new body wrap. Results: The image quality assessment was 82.0±13.8 before the improvement and 89.3±10.1 after the improvement, an average of 7.3 points higher, with a statistically significant difference (t=5.02, p<0.01). The user satisfaction survey showed an overall satisfaction rating of 4.1±0.8 for ease of use, 3.8±0.7 for scan preparation time, 3.9±0.7 for patient safety, 3.8±1.2 for scan accuracy, and 4.2±0.7 for recommendation (87.5% questionnaire response rate). Conclusion: The developed body wrap showed higher image quality and user satisfaction compared to the old method. Considering these results, it is deemed that the new body wrap may be more useful than existing methods.

APPLICATION OF WHOLE BODY COUNTER TO NEUTRON DOSE ASSESSMENT IN CRITICALITY ACCIDENTS

  • Kurihara, O.;Tsujimura, N.;Takasaki, K.;Momose, T.;Maruo, Y.
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.249-253
    • /
    • 2001
  • Neutron dose assessment in criticality accidents using Whole Body Counter (WBC) was proved to be an effective method as rapid neutron dose estimation at the JCO criticality accident in Tokai-mura. The 1.36MeV gamma-ray of $^{24}Na$ in a body can be detected easily by a germanium detector. The Minimum Detectable Activity (MDA) of $^{24}Na$ is approximately 50Bq for 10miniute measurement by the germanium-type whole body counter at JNC Tokai Works. Neutron energy spectra at the typical shielding conditions in criticality accidents were calculated and the conversion factor, whole body activity-to-organ mass weighted neutron absorbed dose, corresponding to each condition were determined. The conversion factor for uncollied fission spectrum is 7.7 $[(Bq^{24}Na/g^{23}Na)/mGy]$.

  • PDF

Thermo-mechanical stress analysis of feed-water valves in nuclear power plants

  • Li, Wen-qing;Zhao, Lei;Yue, Yang;Wu, Jia-yi;Jin, Zhi-jiang;Qian, Jin-yuan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.849-859
    • /
    • 2022
  • Feed-water valves (FWVs) are used to regulate the flow rate of water entering steam generators, which are very important devices in nuclear power plants. Due to the working environment of relatively high pressure and temperature, there is strength failure problem of valve body in some cases. Based on the thermo-fluid-solid coupling model, the valve body stress of the feed-water valve in the opening process is investigated. The flow field characteristics inside the valve and temperature change of the valve body with time are studied. The stress analysis of the valve body is carried out considering mechanical stress and thermal stress comprehensively. The results show that the area with relatively high-velocity area moves gradually from the bottom of the cross section to the top of the cross section with the increase of the opening degree. The whole valve body reaches the same temperature of 250 ℃ at the time of 1894 s. The maximum stress of the valve body meets the design requirements by stress assessment. This work can be referred for the design of FWVs and other similar valves.

Diffuse Hepatic Uptake of $^{99m}Tc$-DPD on Whole Body Bone Scan: The Influence of MRI Contrast (전신 뼈 검사에서 $^{99m}Tc$-DPD의 미만성 간 섭취: MRI 조영제의 영향)

  • Yun, Jong Jun;Jeong, Ji Uk;Hwang, Ju Won
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.57-61
    • /
    • 2012
  • Purpose : The whole body bone scan on nuclear medicine is a widely accepted examination and procedure. However, unusual nonosseous uptake can be observed, which reflects a rare interaction between the radiopharmacceutical and the patient. This study aimed to evaluate the influence of MRI(Magnetic Resonance Imaging) contrast and $^{99m}Tc$-DPD(Dicarboxpropane diphosphonate) on whole body bone scan. Materials and Methods : We analyzed the 982 patients who were examined by $^{99m}Tc$-DPD on whole body bone scan in nuclear medicine department of pusan national university hospital from january to december 2010. All these 982 patients had MRI contrast administration prior to whole body bone scan. We analyzed laboratory test. Results : 46 patients(men 39, women 7) showed diffuse hepatic uptake on whole body bone scan. These uptakes were disappeared on the follow-up whole body bone scan. There were no significant difference of CBC test, liver function tests and renal function tests. Conclusion : The study might be an indirect evidence that diffuse hepatic and splenic uptake of 99mTc-DPD on whole body bone scan after intravenous administration of Gadolinium(Gd) MRI contrast. To perform a precise examination, Gd-contrast agent should be removed from the body before performing a whole body bone scan.

  • PDF

The Comparison of Image Quality Using Body Contour and Circular Method with L-mode in Myocardial Perfusion SPECT (Tl-201을 이용한 심근관류 SPECT에서 Body contour와 Circular mode의 영상 획득 차이에 따른 영상의 질 비교)

  • Kim, Sung-Hwan;Nam, Ki-Pyo;Ryu, Jae-Kwang;Yoon, Soon-Sang
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.3-7
    • /
    • 2012
  • Purpose : In myocardial perfusion SPECT, the type of orbit (circular vs. body contouring) that affect the image quality is still on the debate. Presently in the nuclear medicine field, the body contouring orbit acquisition is widely used to improve the image quality on the myocardial perfusion SPECT. But in case of body contouring acquisition using the vertical method with dual detect machine, there is a tendency of increasing the radius. In this research, we compared body contouring orbit acquisition with circular orbit acquisition, so we suggest ideal method that reduces the radius for improving image quality. Materials and Methods : Phantom and clinical studies were performed. The anthropomorphic torso phantom was made on equally with counts from patient's body. The study was performed under six different conditions. To compare image quality according to the radius, we increased radius sequentially per step during circular orbit acquisition. On the other hand, sensors that protect a collision and reduce the radius automatically were used to acquire image during body contouring orbit acquisition. So we compared FWHM value of apex. In clinical studies, we analyzed the 40 patients who were examined by Tl-201 gated myocardial perfusion SPECT in department of nuclear medicine at Asan Medical Center in August 2011. To acknowledge the differences according to the radius, we acquired the results two times using circular orbit acquisition and body contouring orbit acquisition. Results : In phantom study, we analyzed that increase of radius resulted in changes of FWHM value. It was 5.41, 6.24, 6.33, 6.42, 6.93 mm. On the other hand, using the body contouring orbit acquisition, FWHM value was 6.23 mm. In clinical study, difference of average radius between two methods was 2.5 cm (circular orbit acquisition was more close to patients). Conclusion : Through the experiments using Anthropomorphic torso phantom and patients data, we found that FWHM value of circular orbit acquisition was lower than body contouring orbit acquisition. As a result, if the difference of average radius exists approximately 3 cm, circular orbit type acquisition is better than body contouring type acquisition. But clinical investigation is only aimed to average radius, so it needs more investigation in comparison of patient's image.

  • PDF

Integrity Assessment on the Nuclear Transport Cask under the Ballistic Impact (발사 충격을 받는 방사성 물질 운반용기의 건전성 평가)

  • Yang, Tae-Ho;Lee, Young-Shin;Lee, Hyun-Seung
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.15-22
    • /
    • 2014
  • As the risk of the various external risk was increased, a study on the integrity assessment of the nuclear transport cask was needed. In this paper, an integrity assessment of the nuclear transport cask under the ballistic impact was studied. The projectile with L/D = 5 was used in simulation. The applied head shapes of the projectile were five types such as flat shape, conical shape, hemispherical shape, truncated conical and sliced flat shape, respectively. The range on the velocity of the projectile was 85 m/s to 680 m/s. The cask body of the nuclear transport cask was not penetrated by the projectile speed up to Vprojectile = 510 m/s. As the cask body was penetrated by the all types projectile with Vprojectile = 680 m/s and the cask lead in the nuclear transport cask was collided with the projectile. As the projectile moved to 31.3 mm in the cask lead, the cask lead was not penetrated by the projectile with Vprojectile = 680 m/s. The integrity assessment on the nuclear transport cask under ballistic impact up to Vprojectile = 680 m/s was obtained.

Multi-body dynamics model for spent nuclear fuel transportation system under normal transport test conditions

  • Seongji Han;Gil-Eon Jeong;Hyeonbeen Lee;Woo-Seok Choi;Jin-Gyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4125-4133
    • /
    • 2023
  • The transportation of spent nuclear fuel is an important process that involves road and sea transport from an interim storage facility to storage and final disposal sites. As spent nuclear fuel poses a significant risk, carefully evaluating its vibration and shock characteristics under normal transport conditions is essential. In this regard, full-scale multi-modal transport tests (MMTT) have been conducted domestically and internationally. In this paper, we discuss the process of developing a multi-body dynamics (MBD) model to analytically simulate conditions that cannot be considered in tests. The MBD model is based on the KORAD-21 transportation system was validated using the Korean MMTT results from 2020 to 2021. This paper summarizes the details of the development and verification of the MBD model for the KORAD-21 transportation system under normal transport test conditions. This approach can be applicable to various transportation scenarios and systems, and the results of this study will help to ensure that nuclear fuel transportation is conducted safely and effectively.

Quantitation of In-Vivo Physiological Function using Nuclear Medicine Imaging and Tracer Kinetic Analysis Methods (핵의학 영상과 추적자 동력학 분석법을 이용한 생체기능 정량화)

  • Kim, Su-Jin;Kim, Kyeong-Min;Lee, Jae-Sung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.2
    • /
    • pp.145-152
    • /
    • 2008
  • Nuclear medicine imaging has an unique advantage of absolute quantitation of radioactivity concentration in body. Tracer kinetic analysis has been known as an useful investigation methods in quantitative study of in-vivo physiological function. The use of nuclear medicine imaging and kinetic analysis together can provide more useful and powerful intuition in understanding biochemical and molecular phenomena in body. There have been many development and improvement in kinetic analysis methodologies, but the conventional basic concept of kinetic analysis is still essential and required for further advanced study using new radiopharmaceuticals and hybrid molecular imaging techniques. In this paper, the basic theory of kinetic analysis and imaging techniques for suppressing noise were summarized.

Usefulness of Blood Pool Half Body in Three Phase Bone Scan in Patients with R/O Reflex Symphathetic Dystrophy Syndrome (반사성교감신경 이영양증후군 환자의 삼상 골 스캔 시 Half Body 혈액 풀 영상의 적용)

  • Lee, Moo-Seok;Lee, Hyo-Yeong;Yun, Jong-Jun;Lee, Hwa-Jin;Song, Hyeon-Seok;Park, Se-Yun;Jeong, Ji-Uk
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.105-110
    • /
    • 2010
  • Purpose: Three phase bone scan was considered sensitive in Patients with Reflex Symphathetic Dystrophy Syndrome (RSDS). Generally, three phase bone scan in the RSDS patients shows increased uptake of one side extremity joint. But three phase bone scan has been performed with flow, blood pool and delayed scan. We performed blood pool half body scan in order to investigate its usefulness. Materials and Methods: From October 2007 to September 2009, three phase bone scan (flow, blood pool, half body blood pool, delayed) was performed after injection of 750 MBq of $^{99m}Tc$-DPD in diagnosed patients with RSDS (M:F=8:7, R:L=9:6). For quantitative analysis, we obtained the count ratios of bilateral hands by drawing a region of interest (ROI) in the three phase images and compared with the count ratios of shoulders in half body blood pool and delayed images. Results: In flow images, right/left ratios were $1.09{\pm}0.53$. In blood pool images, right/left ratios were $1.13{\pm}0.47$ (hand), $1.08{\pm}0.26$ (shoulder). In delayed images, right/left ratios were $1.24{\pm}0.75$ (hand), $1.11{\pm}0.31$ (shoulder). As a result, Log of right/left counts of the others and that of shoulder blood pool image were correlated well with statistical significance (Spearman's R, p<0.005 SPSS for windows ver.12.0). Conclusion: Half body blood pool scan may be helpful in the diagnosis of patients with RSDS. Moreover, Half body blood pool scan reduced false negative and false positive rates. In order to improve agreement on interpretation of RSDS, Blood pool half body scan should be established as common criteria.

  • PDF

Calculation of Effective Half-life of Gamma Emission Radionuclide using Bio-kinetic Model (생체역동학 모델을 이용한 감마선 방출 핵종의 유효반감기 계산)

  • Lee, Sang-Kyung;Jeong, Kyu-Hwan;Lee, Ji-Yon;Kim, Bong-Gi;Kim, Jung-Min
    • Journal of Radiation Industry
    • /
    • v.12 no.4
    • /
    • pp.277-285
    • /
    • 2018
  • Patients administered radioisotope for medical purposes are regulated by each country to quarantine them until their body's radioactivity contents decrease below release criteria. To predict the quarantine period and provide it to medical staffs and patients, it is necessary to approach the assessment of the exposure dose of persons due to patients in a realistic manner. For this purpose, a whole-body effective half-life should be applied to the dose assessment equation instead of the physical half-life. In this study, we constructed a bio-kinetic model for each nuclear species based on the ICRP publication to obtain a whole-body effective half-life of 10 unsealed gamma-ray emitting nuclei from the notification of Nuclear Safety and Security Commission, and calculated the effective half-life mathematically by simulating the distribution of the radioisotope administered in the whole body as well as each organ scale. The whole-body effective half-life of $^{198}Au$, $^{67}Ga$, $^{123}I$, $^{111}In$, $^{186}Re$, $^{99m}Tc$, and $^{201}TI$ were 1,93, 2.57, 0.295, 2.805, 1.561, 0.245, and 2.397 days respectively. However, it was found to be undesirable to offer a single value of the effective half-life of $^{125}I$, $^{131}I$, and $^{169}Yb$ because the changes in the effective half-life show no linearity. A bio-kinetic model created for the internal exposure assessment has been shown to be possible to calculate the effective half-life of radioisotopes administered in the patient's body, but subsequent studies of radiolabeled compounds are required as well.