• 제목/요약/키워드: ns3-gym

검색결과 1건 처리시간 0.013초

Rate Adaptation with Q-Learning in CSMA/CA Wireless Networks

  • Cho, Soohyun
    • Journal of Information Processing Systems
    • /
    • 제16권5호
    • /
    • pp.1048-1063
    • /
    • 2020
  • In this study, we propose a reinforcement learning agent to control the data transmission rates of nodes in carrier sensing multiple access with collision avoidance (CSMA/CA)-based wireless networks. We design a reinforcement learning (RL) agent, based on Q-learning. The agent learns the environment using the timeout events of packets, which are locally available in data sending nodes. The agent selects actions to control the data transmission rates of nodes that adjust the modulation and coding scheme (MCS) levels of the data packets to utilize the available bandwidth in dynamically changing channel conditions effectively. We use the ns3-gym framework to simulate RL and investigate the effects of the parameters of Q-learning on the performance of the RL agent. The simulation results indicate that the proposed RL agent adequately adjusts the MCS levels according to the changes in the network, and achieves a high throughput comparable to those of the existing data transmission rate adaptation schemes such as Minstrel.