• Title/Summary/Keyword: nozzle geometry

Search Result 202, Processing Time 0.025 seconds

Numerical study on the effects of nozzle geometry and substrate location in the supersonic flow (노즐 형상과 기판의 위치 변화가 초음속 유동에 미치는 영향에 관한 수치해석 연구)

  • Park, Jung Jae;Yoon, Suk Goo;Kim, Ho Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.58.2-58.2
    • /
    • 2010
  • This paper deals with the simulation of solid particle coating technology via supersonic nozzle in vacuum environment to devote as an aerosol-deposition device. In order to improve efficiencies of nozzle and coating process, effects of shockwave, nozzle geometry, and substrate location were studied computationally under a fixed chamber pressure of 0.01316 bar which is nearly vacuous. Shockwave is the important factor affect to entire flow because shockwave in the jet flow dissipates the kinetic energy of the flow in the supersonic condition. Results show that various nozzle geometries have significant effect on the supersonic flow and we know that the supersonic nozzle should be optimized to minimize the loss of the flow. Another parameter, the distance between substrate and nozzle tip, shows little effect in this study.

  • PDF

A COMPUTATIONAL APPROACH TO DESIGN THE GEOMETRY OF THE AIR-TWIST NOZZLE (Air-twist 노즐 형상 설계의수치적 연구)

  • Juraeva, M.;Song, D.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.67-70
    • /
    • 2010
  • Spandex yarn requires a twisting process during winding and unwinding processes at the textile industry. The air-twist nozzle is widely used as part of the winding and unwinding. This paper describes computational approach to design the geometry of the air-twist nozzle. The nozzle has circular yarn-channel and the air-inlet which is perpendicularly connected to the yarn-channel with yarn-loading slit. The air-inlet of the nozzle is designed while measurements of the yarn-channel are fixed. The airflow inside the air-twist nozzle is simulated by using Computational Fluid Dynamic model. The Ansys CFX was used to perform steady simulations of the airflow for the air-twisting process. The vortical structure and the airflow pattern such as velocity streamline, vorticity, velocity of the air-twist nozzle are discussed. Computational results are compared with experimental results in this paper.

  • PDF

Variable Geometry Mixed Flow Turbine for Turbochargers: An Experimental Study

  • Rajoo, Srithar;Martinez-Botas, Ricardo
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.155-168
    • /
    • 2008
  • This paper investigates a variable geometry (VG) mixed flow turbine with a novel, purposely designed pivoting nozzle vane ring. The nozzle vane ring was matched to the 3-dimensional aspect of the mixed flow rotor leading edge with lean stacking. It was found that for a nozzle vane ring in a volute, the vane surface pressure is highly affected by the flow in the volute rather than the adjacent vane surface interactions, especially at closer nozzle positions. The performance of the VG mixed flow turbine has been evaluated experimentally in steady and unsteady flow conditions. The VG mixed flow turbine shows higher peak efficiency and swallowing capacity at various vane angle settings compared to an equivalent nozzleless turbine. Comparison with an equivalent straight vane arrangement shows a higher swallowing capacity but similar efficiencies. The VG turbine unsteady performance was found to deviate substantially from the quasi-steady assumption compared to a nozzleless turbine. This is more evident in the higher vane angle settings (smaller nozzle passage), where there are high possibility of choking during a pulse cycle. The presented steady and unsteady results are expected to be beneficial in the design of variable geometry turbochargers, especially the ones with a mixed flow turbine.

Prediction of the internal flow in a pintle nozzle for LPG engine (LPG 엔진용 고압 핀틀노즐 내부유동 수치해석)

  • Jeong, Hong-Cheol;Kim, Byeong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.8
    • /
    • pp.1077-1085
    • /
    • 1997
  • The use of "clean fuels" such as butane, propane, and mixtures of these (LPG) is an attractive way to reduce exhaust emissions. In this study internal flow of the pintle type injector for LPG engine is studied. The breakup of liquid jet is the result of competing, unstable hydrodynamic forces acting on the liquid jet as it exits the nozzle. The nozzle geometry and up-stream injection conditions affect the characteristics of flow inside the nozzle, such as turbulence and cavitation bubbles. A set of calculations of the internal flow in a pintle type nozzle were performed using a two dimensional flow simulation under different nozzle geometry and upstream flow conditions. The calculation showed that the turbulent intensity and discharge coefficient are related to needle leading angle(.alpha.) and needle lift.edle lift.

Numerical Study on the Effect of Nozzle Geometry on the Small CRDI Engine Performance (노즐 형상 변경이 소형 CRDI 엔진의 성능에 미치는 영향에 대한 수치 해석적 연구)

  • Min, Se Hun;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.20 no.4
    • /
    • pp.254-260
    • /
    • 2015
  • The objective of this study is to investigate the effect of multi-hole nozzle on the performance of small CRDI engine. Combustion and exhaust emission characteristics of engine were studied by using CFD simulation with ECFM-3Z combustion model. The conditions of simulation were varied with nozzle geometry, injection timing and injection quantity. In addition, the results were compared in terms of combustion pressure, rate of heat release, $NO_x$ and soot emissions. It was found that combustion pressure was increased when injection timing was advanced. The rate of heat release of 6 hole nozzle was higher than that of 12 hole nozzle since the quantity of fuel impinged at the bottom of piston rim was different under different injection timing conditions. In the case of $NO_x$ emission, 6 hole nozzle generated more $NO_x$ emission than 12 hole nozzle. On the other hand, in the case of soot emission, 12 hole nozzle showed higher value than 6 hole nozzle because injected fuel droplets from multi-hole nozzle were coalesced.

Effect of Nozzle Cap Geometry for Swirl-Type Two-Fluid Nozzle on the Spray Characteristics (선회형 이유체노즐의 노즐캡 형상에 따른 분무특성)

  • Choi, Y.J.;Kang, S.M.;Kim, D.J.;Lee, J.K.
    • Journal of ILASS-Korea
    • /
    • v.13 no.3
    • /
    • pp.134-142
    • /
    • 2008
  • In the case of heavy duty diesel engines, the Urea-SCR system is currently considered to reduce the NOx emission as a proved technology, and it is widely studied to get the high performance and durability. However, the nozzles to inject the urea-water solution into the exhaust pipe occur some problems, including the nozzle clogging, deposition of urea-water solution on the inner wall of the exhaust pipe, resulting in the production of urea salt. In this study, a swirl-type twin-fluid nozzle to produce more fine droplets was used as a method to solve the problems. The effect of the nozzle cap geometry, including the length to diameter ratio ($l_o/d_o$) and chamfer, on the spray characteristics were investigated experimentally. The length to diameter ratio of nozzle cap were varied from 0.25 to 1.125. The chamfer angle of the nozzle cap was constant at 90o. The mean velocity and droplet size distributions of the spray were measured using a 2-D PDA (phase Doppler analyzer) system, and the spray half-width, AMD (arithmetic mean diameter) and SMD (Sauter mean diameter) were analyzed. At result, The larger length to diameter ratio of nozzle cap were more small SMD and AMD. The effect of the chamfer did increase the radial velocity, while it did not affect the atomization effect.

  • PDF

ADJOINT METHOD FOR CONTROLLED CAVITATION INVERSE NOZZLE DESIGN

  • Petropoulou, S.;Gavaises, M.;Theodorakakos, A.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.283-288
    • /
    • 2006
  • A mathematical methodology is proposed for designing nozzle hole shapes producing controlled geometric cavitation. The proposed methodology uses an unstructured RANS flow solver, with the ability to compute sensitivity derivatives via an adjoint algorithm. The adjoint formulation for the N-S equations is presented while variation of the turbulence viscosity is not taken into account during the geometry modifications. The sensitivities are calculated in a mode independently of the shape parameterisation. The method is used to develop and evaluate conceptual shapes for nozzle hole cavitation reduction. The localized region at the hole inlet producing cavitation, is parameterised using its radius of curvature, while a cost function is formulated to eliminate the negative pressures present at this location. Sensitivity derivatives are used to assess the dependence of the localized region on the minimum pressure, and to drive the geometry to the targeted shape. The results show that the computer model can provide nozzle hole entry shapes that produce predefined flow characteristics, and thus can be used as an inverse design tool for nozzle hole cavitation control.

A Study on the Optimization of Fuel Injection Nozzle Geometry for Reducing NOx Emission in a Large Diesel Engine (대형 디젤 엔진의 연료 분사 노즐 형상이 NOx 발생량 및 연료소비율에 미치는 영향 연구)

  • Kim Ki-Doo;Ha Ji-Soo;Yoon Wook-Hyeon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1123-1130
    • /
    • 2004
  • Numerical simulations have been carried out to investigate the effect of nozzle hole geometry on the combustion characteristics of the large diesel engine. 6S90MC-C. Spray and combustion phenomena were examined numerically using FIRE code. Wane breakup and Zeldovich models were adopted to describe the atomization characteristics and NOx formation processes. Predictions on the cylinder peak pressure and NOx emission were first verified with the experimental data to confirm the reliability of numerical calculations. The comparison results showed good agreements within the range of 0.64% and 4.6% respectively. Finally, the effects of fuel spray angle and diameter on the engine performance were investigated numerically to find the optimum nozzle hole geometry considering fuel consumption, NOx emission and heat flux of the combustion chamber wall. It was concluded that the combustion gas recirculation in cylinder by changing fuel injection direction is an effective method to reduce NOx emission by about 10% with increasing fuel oil consumption, 1.4% in a large diesel engine.

Analysis of Low Reynolds Number Flow in Nozzle and Diffuser (노즐-디류저 내에서의 저 Reynolds수 해독특성 해석)

  • Song, Gwi-Eun;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2672-2677
    • /
    • 2007
  • An investigation of low Reynolds number flow in nozzles and diffusers which are widely used in the valveless micropump is presented. Flow characteristics in the nozzle and diffuser are explained in view of viscous effect and flow oscillation induced by pumping membrane. These calculation results show that the rectification property of valveless micropump is due to a flow separation in the diffuser and the separation is largely originated from the flow oscillation. Under the assumptions of steady flow velocity profile and flow separation in the diffuser, simplified analytical models are provided to see the dependency of rectification on the micropump geometry. Geometric parameters of channel length, nozzle throat, chamber size, and converging/diverging angle are depicted through the analytical models in low Reynolds number flow, and the prediction and experimental results are compared. This theoretical study can be used to determine the optimum geometry of valveless micropump.

  • PDF