• 제목/요약/키워드: nozzle geometry

Search Result 202, Processing Time 0.022 seconds

A Numerical Study on the Geometry of Jet Injection Nozzle of a Coanda Control Surface

  • Seo, Dae-Won;Kim, Jong-Hyun;Kim, Hyo-Chul;Lee, Seung-Hee
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.3
    • /
    • pp.36-54
    • /
    • 2008
  • A jet stream applied tangential to a curved surface in fluid increases lift force by strengthening circulation around the surface and this phenomenon is known as the Coanda effect. Many experimental and numerical studies have been performed on the Coanda effect and the results found to be useful in various fields of aerodynamics. Recently, preliminary studies on Coanda control surface are in progress to look for practical application in marine hydrodynamics since various control surfaces are used to control behaviors of ships and offshore structures. In the present study, the performance of a Coanda control surface with different geometries of the jet injection nozzle was surveyed to assess applicability to ship rudders. A numerical simulation was carried out to study flow characteristics around a section of a horn type rudder subjected to a tangential jet stream. The RANS equations, discretized by a cell-centered finite volume method were used for this computation after verification by comparing to the experimental data available. Special attentions have been given to the sensitivity of the lift performance of a Coanda rudder to the location of the slit (outlet) and intake of the gap between the horn and rudder surface at the various angles of attack. It is found that the location of the water intake is important in enhancing the lift because the gap functions as a conduit of nozzle generating a jet sheet on the rudder surface.

A Study on the Structural Stability of Nozzle Manufactured with 5-axis Machining (5축 가공으로 제작한 노즐의 구조 안정성에 관한 연구)

  • Changwook Lee;Yongseok Park;DuckYong Jo;Seong Man Choi
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.5
    • /
    • pp.44-51
    • /
    • 2022
  • In this study, 5-axis machining was proposed as a method for manufacturing a nozzle with a curved shape, and flow analysis and structural analysis were used for structural validation of the manufactured geometry. The program used for CFD obtained the internal temperature and pressure distribution of the nozzle using STAR-CCM+ and used it as the boundary condition for structural analysis. For structural analysis, the commercial program NASTRAN was used, and stress was calculated using the von-mises technique. Based on the maximum stress value generated, the safety margin was 0.78 and the safety margin of the bearing stress was 46.8. In addition, the creep life was calculated as 9.97 x 1012 hours using the Larson-Miller parametric method and applying the maximum stress value of 187 MPa and the exhaust gas perfectly mixed temperature of 463 K.

An Estimation on Area Error For Surface Roughness Advancement of Rapid Prototype by FDM (FDM에서 단면오차법을 이용한 표면예측)

  • 전재억;김수광;황양오;박후명;하만경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1869-1872
    • /
    • 2003
  • As SLA(Sterealithography), SLS(Selective Laser Sintering), LOM(Laminated Object Manufacturing), FDM(Fused Deposition Modeling) etc. The FDM system the heart of a study and is developed by Stratasys co. ltd, in US., is small and cheap R.P. The material filament is heated until the material reaches a near-liquid state, it is pumped through a nozzle and become hand with a shape required, and this nozzle move pumping on the previously deposited material. Such FDM system that choice deposition type with X-Y plouter obtain in the thin continue layer by decreasing amount of extrusion or to central the injection amount when the head slow down at the corner, but in the process that fusion wax or resin become hand, deformation occur and it will affect the shape accuracy and the surface roughness. Such effect will depreciate quality and reliability of the product. Therefore, when the product made in actuality, the fundamental study on the basis geometry(surface, volume, line, angle) must be preceded and it have been research by many Free Form Fabrication. So, this basic object study purpose to obtain the fundamental geometry data and to enhance the surface roughness of the shape. And an operant can use the data for the progress of the surface roughness. This study research the estimation and application of the prototype surface roughness by adjustment the injection amount. And basie of this research, describe the pattern of prototype surface roughness and also used the result to estimate the surface of prototype.

  • PDF

Spray Characteristics of Supersonic Liquid Jet by a Nozzle Geometry of Miniature High-Pressure Injection System (축소형 초고압 분사 시스템의 노즐 형상에 따른 초음속 액체 제트 분무 특성에 관한 연구)

  • Shin, Jeung-Hwan;Lee, In-Chul;Kim, Heuy-Dong;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.177-180
    • /
    • 2010
  • Two-stage light gas gun, sorted with Ballistic Range System, is used to research spray characteristics of supersonic liquid jets. When high pressure tube was pressurized to the 135 bar, diaphragm films which composed with OHP film are ruptured. Expansion gases accelerate a projectile approximately 250 m/s at the exit of pump tube. And accelerated projectile collides with liquid storage part and liquid jets were injected into supersonic conditions. Supersonic liquid jets show the multiple jets and generate shockwave at the forward region of jets. Supersonic liquid jets of speed and shockwave angle have different value at each case. Supersonic liquid jets with minimum velocities are injected with M=1.53 at the geometry condition of L/d=23.8.

  • PDF

Numerical simulation of combustor afterward sprayed in hot product stream (고온기류중에 재분사된 연소기 후류의 수치해석)

  • Kim, Tae-Han;Gwon, Hyeong-Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.7
    • /
    • pp.841-848
    • /
    • 1997
  • Combustion of gaseous fuel combustor in a high temperature vitiated air stream was studied with computer simulation. It is for application to afterburner of gas turbine engine which the exact mechanism is not yet clarified. As the jet velocity from fuel nozzle is very high and the geometry of combustor is three dimensional complex structure, many time and money are required to have good results. To consider this demerit, it is simplified to 2-dimensional and modified with the nozzle hole area to same area of annual status. As the thickness of annual is too thin, it is to divide with the many grids for reasonable results. Accordingly, new method which injected fuel mass, momentum and energy are added to source terms of each governing conservation equation as a source terms is introduced like as two phase analysis. Reaction rate is determined by taking into account the Arrhenius reaction based on a single step reaction mechanism. It is focused to temperature and product concentration distribution at each equivalence ratio of inlet hot product.

Erosion Behavior of SiC Coated C/C Composites with Condition of Combustion Test

  • Joo, Hyeok-Jong;Min, Kyung-Dae;Lee, Jae-Won
    • Carbon letters
    • /
    • v.4 no.3
    • /
    • pp.133-139
    • /
    • 2003
  • Carbon/carbon composites are ideal candidates for a number of aerospace applications including structural materials for advanced vehicles, leading edges, structures of re-entry and hypersonic vehicles and propulsion systems. One serious defect for such application of the carbon/carbon composites is their poor oxidation resistance in high temperature oxidizing environments. SiC coating was employed to protect the composites from oxidation. It is mechanically and chemically stable under extreme thermal and oxidative environments, provides good adhesion to the substrate, and offers good thermal shock resistance. The SiC layer on the nozzle machined from the carbon/carbon composites was formed by pack-cementation method. Then, erosion characteristic of SiC coated carbon/carbon nozzle was examined by combustion test using a liquid rocket motor. The erosion rates were measured as function of combustion pressure, ratio of oxygen to fuel, combustion time, density of the composites and geometry of reinforced carbon fibre in the composites. The morphology change of the composites after combustion test was investigated using SEM and erosion mechanism also was discussed.

  • PDF

Unsteady Conjugate Heat Transfer Analysis of a Cooled Turbine Nozzle with High Free Stream Turbulence

  • Seo, Doyoung;Hwang, Sunwoo;Son, Changmin;Kim, Kuisoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.279-289
    • /
    • 2017
  • In this study, a series of conjugate heat transfer (CHT) analyses are conducted for a stage of a fully cooled high-pressure turbine (HPT) at elevated levels of free stream turbulence (Tu = 5% and 25.7%). The goal of the analyses is to investigate the influence of high turbulence intensity on the fluid-thermal characteristics of a nozzle guide vane (NGV). The turbine inlet temperature is defined by considering a typical radial temperature distribution factor (RTDF). The Unsteady Reynolds Average Navier-Stokes (URANS) CHT simulations are carried out using CFX 15.0, a commercial CFD package. The presented CFD modeling approach for high turbulence intensity is verified with the experimental data from two types of NASA C3X NGVs with films. The computation grid is generated for both the fluid and solid domains. The fluid domain grid is created using a tetrahedral grid system with prism layers because of its complex geometry, and the solid domain grid is composed of only tetrahedral elements. The analytical results are compared to understand the effect of turbulence on flow characteristics and metal temperature distributions. The results obtained in this study provide useful insights on the effects of high free stream turbulence and unsteadiness. The results also lead to the proposal of meaningful turbine design guidelines.

Ramjet Propulsion Performance for Acceleration and Cruise using a Unified Numerical Analysis (통합 수치해석기법으로 램제트의 가속과 순항 비행시 추진체의 성능연구)

  • Yeom, Hyo-Won;Kim, Sun-Kyeong;Sung, Hong-Gye;Gil, Hyun-Yong;Gul, Youn-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.299-302
    • /
    • 2008
  • A unified numerical analysis including combustion was conducted in order to study on performance of ramjet propulsion. The geometry of concern includes the entire flow path of a ramjet extending from intake to exhaust nozzle. Acceleration mode and cruise mode were considered in several equivalence ratios. Pressure distributions, terminal shock train range at the intake, temperature distributions in the combustors, and fuel mass fraction at the nozzle exit were investigated for each flight mode.

  • PDF

An Experimental Study of Supersonic Underexpanded Jet Impinging on a Perpendicular Flat Plate (평판 위에 충돌하는 초음속 과소팽창 제트에 관한 실험적 연구)

  • 이택상;신완순;이정민;박종호;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.3
    • /
    • pp.53-61
    • /
    • 1999
  • Impinging jets are observed when exhaust gases from missiles or V/STOL aircrafts impinge on the ground, flame deflector, ship deck, etc. The flow shows different patterns according to the nozzle geometry, nozzle-to-plate distance, and plate angle, for example. This paper describes experimental works on the phenomena (pressure distribution, occurrence of stagnation bubble, and so on.) when underexpanded supersonic jets impinge on a perpendicular flat plate using a supersonic cold-flow system, and compares the results with those obtained using a shock tunnel. The flow characteristics for the supersonic cold-flow system were also investigated. Surface pressure distribution of supersonic cold-flow system differed from that of shock tunnel because of water and temperature in the low-pressure chamber. Surface pressure distribution as to underexpanded ratio showed similar patterns together.

  • PDF

Energy Separation Characteristics of Single Hole Vortex Generator (단일 유로를 갖는 와류발생기의 에너지분리 특성)

  • Yu, Gap-Jong;Jang, Jun-Yeong;Choe, In-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1005-1012
    • /
    • 2001
  • When vortex tubes are applied to enhance the coefficient of performance of refrigeration system, the smaller one is preferable. However, the existing vortex generator with a nozzle hole diameter of 0.5mm was not suitable due to chocking of the nozzle hole. Therefore, experimental investigation was made to find an appropriate geometry of vortex generator, which could give a comparable effect of energy separation to commercial ones without chocking problem. The tested vortex generators were tangential and spiral types, which had single inducing channel with larger cross-sectional area than that of conventional multi-hole ones. The experimental result showed that the performance of the spiral type was better than that of the tangential one. As a small size of spiral one, the diameter of cold-end orifice is proposed to an half of tube diameter for the application to refrigeration system, while cold mass fraction ratio is 0.5∼0.6 for a desirable operation.