• 제목/요약/키워드: novel species

검색결과 755건 처리시간 0.026초

Characterization of Potato Scab Pathogens (Streptomyces Species) in Korea

  • Park, Duck-Hwan;Shrestha, Rosemary;Hur, Jang-Hyun;Lim, Chun-Keun
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2005년도 International Meeting of the Microbiological Society of Korea
    • /
    • pp.162-165
    • /
    • 2005
  • Potato scab, an important disease that affects developing tubers, causes a major problem in potato cultivation. The major potato cultivation areas in Korea are located in two Northern provinces, Gangwon and Gyeonggi, and two Southern provinces, Jeju island, and South Jeolla. In these areas, potato scab is widely distributed and has caused severe problem in potato cultivation. Therefore, potato-growing areas were surveyed for identification and distribution of potato scab pathogens from 1996 to 1999. Pathogenic Streptomyces strains were isolated from potato scab lesions and six representative Streptomyces species were characterized based on their phenotypic and molecular characteristics including, pathogenicity, physiological and morphological properties, analyses of 16SrRNA genes and 16S-23S ITS region, DNA relatedness, production of thaxtomin A, and the presence of nec1 and ORFtnp gene homologs. Three species were identified as previously described Streptomyces scabies, S. turgidiscabies, and S. acidiscabies, while other three species having distinct phenotypics properties were identified as novel S. luridiscabiei, S. puniciscabiei, and S. niveiscabiei.

  • PDF

Multispecies Interactions in Biofilms and Implications to Safety of Drinking Water Distribution System

  • Reuben, Rine Christopher;Roy, Pravas Chandra;Sarkar, Shovon Lal;Ha, Sang-Do;Jahid, Iqbal Kabir
    • 한국미생물·생명공학회지
    • /
    • 제47권4호
    • /
    • pp.473-486
    • /
    • 2019
  • In the aquatic environment, microorganisms are predominantly organized as biofilms. Biofilms are formed by the aggregation of microbial cells and are surrounded by a matrix of extracellular polymeric substances (EPS) secreted by the microbial cells. Biofilms are attached to various surfaces, such as the living tissues, indwelling medical devices, and piping of the industrial potable water system. Biofilms formed from a single species has been extensively studied. However, there is an increased research focus on multispecies biofilms in recent years. It is important to assess the microbial mechanisms underlying the regulation of multispecies biofilm formation to determine the drinking water microbial composition. These mechanisms contribute to the predominance of the best-adapted species in an aquatic environment. This review focuses on the interactions in the multispecies biofilms, such as coaggregation, co-metabolism, cross-species protection, jamming of quorum sensing, lateral gene transfer, synergism, and antagonism. Further, this review explores the dynamics and the factors favoring biofilm formation and pathogen transmission within the drinking water distribution systems. The understanding of the physiology and biodiversity of microbial species in the biofilm may aid in the development of novel biofilm control and drinking water disinfection processes.

Storage of Bull and Boar Semen: Novel Concepts Derived Using Magnetized Water and Antioxidants

  • Lee, Sang-Hee;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • 제38권1호
    • /
    • pp.1-8
    • /
    • 2014
  • Artificial insemination technique has been contributed immensely for production of livestock worldwide as a critical assisted reproductive technique to preserve and propagate excellent genes in domestic animal industry. In the past decade, methods for semen preservation have been improved mostly in liquid preservation method for boar semen and freezing method for bull semen. Among many factors affecting semen quality during preservation, reactive oxygen species, produced by aerobic respiration in sperm for survival and motility, are unfavorable to sperm physiology. In mammalian cell as well as in the sperm, antioxidant system plays a role in degradation of reactive oxygen species. Magnetized water forms smaller stabilizing water clusters, resulting in high absorption and permeability of the cell for water, implicating its application for semen preservation. Therefore, this review focuses on preservation methods of boar and bull semen with respect to improvement of extender and reduction of reactive oxygen species by using magnetized water and supplementation of antioxidants.

Approach for Cloning and Characterization of Blue/White Flower Color Specific cDNA Clones from Two Commelina Species

  • Lee Gunho;Yeon Mooshik;Hur Yoonkang
    • Journal of Plant Biotechnology
    • /
    • 제7권1호
    • /
    • pp.45-50
    • /
    • 2005
  • To clone blue and white flower color specific genes, mRNA differential display was carried out with two different Commelina species, C. communis Linne for blue color and C. coreana Leveille for. leucantha Nakai for white color. Fifty two and 100 cDNA clones specific for blue or white flower color, respectively, were ranging from 200 to 700 bp in size. From the reverse northern blot analysis, 12 and 7 positive clones were selected for blue and white flower, respectively. These clones appear to be novel cDNAs for these Commelina plants, but not color specific. This finding was supported by the northern blot analysis. However, two clones, B18 and B19, derived from blue flowered Commelina were highly expressed than in the white Commelina species, implying that further study will be valuable. The results indicated that both mRNA display experiment and dot blot analysis may not sensitive enough to clone color-determining gene from the plant, leading to explore more advanced method, like high-density colony array study (HDCA).

Molecular Links between Alcohol and Tobacco Induced DNA Damage, Gene Polymorphisms and Patho-physiological Consequences: A Systematic Review of Hepatic Carcinogenesis

  • Mansoori, Abdul Anvesh;Jain, Subodh Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권12호
    • /
    • pp.4803-4812
    • /
    • 2015
  • Chronic alcohol and tobacco abuse plays a crucial role in the development of different liver associated disorders. Intake promotes the generation of reactive oxygen species within hepatic cells exposing their DNA to continuous oxidative stress which finally leads to DNA damage. However in response to such damage an entangled protective repair machinery comprising different repair proteins like ATM, ATR, H2AX, MRN complex becomes activated. Under abnormal conditions the excessive reactive oxygen species generation results in genetic predisposition of various genes (as ADH, ALDH, CYP2E1, GSTT1, GSTP1 and GSTM1) involved in xenobiotic metabolic pathways, associated with susceptibility to different liver related diseases such as fibrosis, cirrhosis and hepatocellular carcinoma. There is increasing evidence that the inflammatory process is inherently associated with many different cancer types, including hepatocellular carcinomas. The generated reactive oxygen species can also activate or repress epigenetic elements such as chromatin remodeling, non-coding RNAs (micro-RNAs), DNA (de) methylation and histone modification that affect gene expression, hence leading to various disorders. The present review provides comprehensive knowledge of different molecular mechanisms involved in gene polymorphism and their possible association with alcohol and tobacco consumption. The article also showcases the necessity of identifying novel diagnostic biomarkers for early cancer risk assessment among alcohol and tobacco users.

The Rapid Differentiation of Toxic Alexandrium and Pseudo-nitzschia Species Using Fluorescent Lectin Probes

  • Cho, Eun-Seob;Park, Jong-Gyu;Kim, Hak-Gyoon;Kim, Chang-Hoon;Rhodes, Lesley L.;Chung, Chang-Soo
    • Journal of the korean society of oceanography
    • /
    • 제34권3호
    • /
    • pp.167-171
    • /
    • 1999
  • Since toxic Alexandrium catenella and non-toxic A. fraterculus are morphologically similar, they are difficult to discriminate under the light microscope. However, a novel technology, such as fluorescein isothiocyanate (FITC)-conjugated lectin probes enables easy and rapid differentiation. Toxic A. catenella bound seven different lectins, whereas the non-toxic A. fratercuzus did not bind Arachis hypogaea (PNA) lectin. In addition, Pseudo-nitrschia species in this study were also difficult to identify to species level with light microscope techniques, but it was possible to classify them using fluorescent lectins. Pseudo-nitzschia multistriata, P. subfraudulenta and P. pungens bound Canavalia ensiformis (ConA), whereas P. subpaclfica did not, and P. pungens also bound Ricinus communis (RCA). These results imply that lectin could be used as a critical tool in the differentiation of P. multistriata, P. subfraudulenta and P. pungens. However, P. subpacifica was not differentiated by the lectins tested. Therefore, it isconcluded that lectin probes are useful for discriminating toxic A. catenella from non-toxic A. fraterculus, and for the identification of some Pseudo-nitzschia species. In addition, this method has a great potential to speed and detection between non-toxic and toxic harmful algal blooms (HABs) in Korean biotoxin monitoring systems.

  • PDF

Bipolaris marantae sp. nov., A Novel Helminthosporoid Species Causing Foliage Blight of the Garden Plant Maranta leuconeura in Brazil

  • Lourenco, Carla Cristina Gomes;Alves, Janaina Lana;Guatimosim, Eduardo;Colman, Adans;Barreto, Robert Weingart
    • Mycobiology
    • /
    • 제45권3호
    • /
    • pp.123-128
    • /
    • 2017
  • A severe leaf spot, turning to foliage blight, was observed on leaves of Maranta leuconeura growing in a garden in Brazil (state of Rio de Janeiro) in 2015. A dematiaceous hyphomycete bearing a morphology typical of a helminthosporoid fungi was regularly found in association with diseased tissues. The fungus was isolated and pathogenicity was demonstrated through the completion of Koch's postulates. A morphology and molecular analysis led to the conclusion that the fungus belonged to the genus Bipolaris, which is characterized by having fusiform conidia, externally thickened and truncate hila and a bipolar pattern of germination. Additionally, homology of internal transcribed spacer and GAPDH sequences with sequences of other Bipolaris species, confirmed its generic placement. A phylogenetic study also indicated clearly that the fungus on M. leuconeura is phylogenetically distinct from related species of this genus, leading to the proposal of the new species Bipolaris marantae.

Cytospora elaeagnicola sp. nov. Associated with Narrow-leaved Oleaster Canker Disease in China

  • Zhang, Linxuan;Alvarez, Lourdes V.;Bonthond, Guido;Tian, Chengming;Fan, Xinlei
    • Mycobiology
    • /
    • 제47권3호
    • /
    • pp.319-328
    • /
    • 2019
  • Cytospora is a genus including important phytopathogens causing severe dieback and canker diseases distributed worldwide with a wide host range. However, identification of Cytospora species is difficult since the currently available DNA sequence data are insufficient. Aside the limited availability of ex-type sequence data, most of the genetic work is only based on the ITS region DNA marker which lacks the resolution to delineate to the species level in Cytospora. In this study, three fresh strains were isolated from the symptomatic branches of Elaeagnus angustifolia in Xinjiang Uygur Autonomous Region, China. Morphological observation and multi-locus phylogenetic analyses (ITS, LSU, ACT and RPB2) support these specimens are best accommodated as a distinct novel species of Cytospora. Cytospora elaeagnicola sp. nov. is introduced, having discoid, nearly flat, pycnidial conidiomata with hyaline, allantoid conidia, and differs from its relatives genetically and by host association.

Molecular and Morphological Characteristics of a New Species Collected from an Insect (Cicindela transbaicalica) in Korea

  • Lee, Ju-Heon;Ten, Leonid N.;Lim, Seong-Keun;Ryu, Jung-Joo;Avalos-Ruiz, Diane;Lee, Seung-Yeol;Jung, Hee-Young
    • Mycobiology
    • /
    • 제50권3호
    • /
    • pp.181-187
    • /
    • 2022
  • To exploit insect-derived fungi, insects were collected from seven different regions in Korea, including Gyeongbuk, Goryeong, and several fungi were isolated from them. A fungal strain designated 21-64-D was isolated from riparian tiger beetle (Cicindela transbaicalica) and morphologically identified as a species belonging to the genus Oidiodendron. Phylogenetic analysis using the nucleotide sequences of internal transcribed spacer (ITS) regions and the partial sequence of the large subunit of the nuclear ribosomal RNA (LSU) gene revealed the distinct phylogenetic position of the isolate among recognized Oidiodendron species including its closest neighbors O. chlamydosporicum, O. citrinum, O. maius, and O. pilicola. The hyphal and conidial morphology of the strain, particularly club-shaped hyphae, clearly differentiated it from its close relatives. Results indicated that 21-64-D is a novel species in the genus Oidiodendron, for which the name Oidiodendron clavatum sp. nov. is proposed.

The Plant-Associated Flavobacterium: A Hidden Helper for Improving Plant Health

  • Hyojun Seo;Ju Hui Kim;Sang-Moo Lee;Seon-Woo Lee
    • The Plant Pathology Journal
    • /
    • 제40권3호
    • /
    • pp.251-260
    • /
    • 2024
  • Flavobacterium is a genus within the phylum Bacteroidota that remains relatively unexplored. Recent analyses of plant microbiota have identified the phylum Bacteroidota as a major bacterial group in the plant rhizosphere. While Flavobacterium species within the phylum Bacteroidota have been recognized as pathogens in the aquatic habitats, microbiome analysis and the characterization of novel Flavobacterium species have indicated the great diversity and potential of their presence in various environments. Many Flavobacterium species have positively contribute to plant health and development, including growth promotion, disease control, and tolerance to abiotic stress. Despite the well-described beneficial interactions of the Flavobacterium species with plants, the molecular mechanisms and bacterial determinants underlying these interactions remain unclear. To broaden our understanding of the genus Flavobacterium's role in plant health, we review the recent studies focusing on their ecological niche, functional roles, and determinants in plant-beneficial interactions. Additionally, this review discusses putative mechanisms explaining the interactions between plants and Flavobacterium. We have also introduced the importance of future research on Flavobacterium spp. and its potential applications in agriculture.