• Title/Summary/Keyword: novel genes

Search Result 949, Processing Time 0.031 seconds

Molecular Cloning and Identification of Novel Genes, Gomsin, Characteristically Expressed in Snailfish, Liparis tanakae (꼼치에서 특징적으로 발현되는 새로운 유전자 곰신의 분리 및 동정)

  • 송인선;이석근;손진기
    • Development and Reproduction
    • /
    • v.6 no.1
    • /
    • pp.7-16
    • /
    • 2002
  • In order to obtain the specific genes of snailfish a subtracted cDNA library was constructed, and analysed by sequencing and GenBank search. Among them C90-171 clone was turned out to be genes showing low homology and nonredundant genes. This novel clone was named Gomsin(C90-171). Gomsin was shown to be intensely expressed in the epithelial cells, some mesenchymal cells, and sheaths of muscle bundles in the result of immunohistochemistry. In the cross reaction assay of Gomsin antibody against various human tissues, the Gomsin was strongly expressed in the ductal and acinar cells of salivary glands, which was similar to the expression patterns of proline-rich proteins(PRPs) of human. The antibody raised against the Gomsin was clearly cross-reacted with human salivary PRPs and also recombinant proteins of human PRPs in the Western blot and immunoprecipitation analysis. Contrast to the salivary PRPs, the Gomsin was not easily degraded in the mixed saliva, but rapidly attacked on the cultured keratocytes in vitro. The simulated protein structure of Gomsin was similar to the whorled pattern of PRPs, even though the amino acid sequence of Gomsin was quite different from those of PRPs. These data suggest that the Gomsin is a characteristic matrix protein in the skin and body of snailfish, which is also utilized for the tissue protection in the similar way to the PRPs of human muco-secretory organs.

  • PDF

Apriona germari Larval Cuticle Protein Genes: Genomic Structure of Three Cuticle Protein Genes and cDNA Cloning of a Novel Cuticle Protein

  • Zheng Gui Zhong;Kim Bo-Yeon;Yoon Hyung-Joo;Wei Ya Dong;Xijie Guo;Jin Byung-Rae;Shon Hung-Dae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.14 no.1
    • /
    • pp.51-56
    • /
    • 2007
  • In a previous study, three larval cuticle protein genes were cloned from the mulberry longicorn beetle, Apriona germari (Comp. Biochem. Physiol. B 136, 803-811, 2003). In the present study, the genomic structures of these three larval cuticle protein genes (AgLCP9.2, AgLCP12.6 and AgLCP12.3) were elucidated. All three cuticle protein genes consist of one intron and two exons. Southern blot analysis of genomic DNA suggested that three cuticle protein genes are a single copy gene. In addition, a novel larval cuticle protein gene, AgLCP10.6, was cloned from A. germari in this study. The AgLCP10.6 cDNA contains an ORF of 300 nucleotides that are capable of encoding a 100-amino acid polypeptide with a predicted molecular mass of 10.6 kDa. The amino acid sequence deduced from the AgLCP10.6 cDNA contained a type-specific consensus sequence identifiable in other insect cuticle proteins and is most homologous to Drosophila melanogaster cuticle protein ACP65A (51 % protein sequence identity). Northern blot analysis revealed that AgLCP10.6 showed epidermis-specific expression.

Haplotype Diversity and Durability of Resistance Genes to Blast in Korean Japonica Rice Varieties

  • Cho, Young-Chan;Jeung, Ji-Ung;Park, Hun-June;Yang, Chang-In;Choi, Yong-Hwan;Choi, In-Bae;Won, Yong-Jae;Yang, Sae-June;Kim, Yeon-Gyu
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.205-214
    • /
    • 2008
  • Blast disease caused by the fungal pathogen, Magnaporthe oryzae, is one of the most damaging diseases in rice. The use of resistant varieties is an effective measure to control the disease, however, many resistant varieties were broken down to their resistance effects by the differentiating of new virulent isolates. This study was done to analyze the haplotypes of 31 microsatellite markers linked to five major R genes and two QTLs and to identify the alleles for the putatively novel genes related to durable resistance to blast in 56 Korean japonica and four indica varieties. The 31 microsatellite markers produced 2 to 13 alleles(mean = 5.4) and had PICi values ranging from 0.065 to 0.860(mean=0.563) among the 60 rice accessions. Cluster analysis based on allele diversities of 31 microsatellite markers grouped into 60 haplotypes and ten major clusters in 0.810 genetic similarity. A subcluster IV-1 grouped of early flowering varieties harboring Piz and/or Pi9(t) on chromosome 6 and Pita/Pita-2 gene on chromosome 12. The other subcluster V-1 consisted of four stable resistance varieties Donghae, Seomjin, Palgong and Milyang20. The analysis of putative QTLs associated with seven blast resistance genes using ANOVA and linear regression showed high significance to blast resistance across regions and isolates in the markers of two genes Piz and/or Pi9(t) and Pita/Pita-2. These results illustrate the utility of microsatellite markers to identify rice varieties is likely carrying the same R genes and QTLs and rice lines with potentially novel resistant gene.

  • PDF