• Title/Summary/Keyword: notoginsenoside Fd

Search Result 2, Processing Time 0.015 seconds

Preparative separation of minor saponins from Panax notoginseng leaves using biotransformation, macroporous resins, and preparative high-performance liquid chromatography

  • Liu, Fang;Ma, Ni;Xia, Fang-Bo;Li, Peng;He, Chengwei;Wu, Zhenqiang;Wan, Jian-Bo
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.105-115
    • /
    • 2019
  • Background: Ginsenosides with less sugar moieties may exhibit the better adsorptive capacity and more pharmacological activities. Methods: An efficient method for the separation of four minor saponins, including gypenoside XVII, notoginsenoside Fe, ginsenoside Rd2, and notoginsenoside Fd, from Panax notoginseng leaves (PNL) was established using biotransformation, macroporous resins, and subsequent preparative high-performance liquid chromatography. Results: The dried PNL powder was immersed in the distilled water at $50^{\circ}C$ for 30 min for converting the major saponins, ginsenosides Rb1, Rc, Rb2, and Rb3, to minor saponins, gypenoside XVII, notoginsenoside Fe, ginsenoside Rd2, and notoginsenoside Fd, respectively, by the enzymes present in PNL. The adsorption characteristics of these minor saponins on five types of macroporous resins, D-101, DA-201, DM-301, X-5, and S-8, were evaluated and compared. Among them, D-101 was selected due to the best adsorption and desorption properties. Under the optimized conditions, the fraction containing the four target saponins was separated by D-101 resin. Subsequently, the target minor saponins were individually separated and purified by preparative high-performance liquid chromatography with a reversed-phase column. Conclusion: Our study provides a simple and efficient method for the preparation of these four minor saponins from PNL, which will be potential for industrial applications.

Qualitative and quantitative analysis of the saponins in Panax notoginseng leaves using ultra-performance liquid chromatography coupled with time-of-flight tandem mass spectrometry and high performance liquid chromatography coupled with UV detector

  • Liu, Fang;Ma, Ni;He, Chengwei;Hu, Yuanjia;Li, Peng;Chen, Meiwan;Su, Huanxing;Wan, Jian-Bo
    • Journal of Ginseng Research
    • /
    • v.42 no.2
    • /
    • pp.149-157
    • /
    • 2018
  • Background: Panax notoginseng leaves (PNL) exhibit extensive activities, but few analytical methods have been established to exclusively determine the dammarane triterpene saponins in PNL. Methods: Ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry (UPLC/Q-TOF MS) and HPLC-UV methods were developed for the qualitative and quantitative analysis of ginsenosides in PNL, respectively. Results: Extraction conditions, including solvents and extraction methods, were optimized, which showed that ginsenosides Rc and Rb3, the main components of PNL, are transformed to notoginsenosides Fe and Fd, respectively, in the presence of water, by removing a glucose residue from position C-3 via possible enzymatic hydrolysis. A total of 57 saponins were identified in the methanolic extract of PNL by UPLC/Q-TOF MS. Among them, 19 components were unambiguously characterized by their reference substances. Additionally, seven saponins of PNL-ginsenosides Rb1, Rc, Rb2, and Rb3, and notoginsenosides Fc, Fe, and Fd-were quantified using the HPLC-UV method after extraction with methanol. The separation of analytes, particularly the separation of notoginsenoside Fc and ginsenoside Rc, was achieved on a Zorbax ODS C8 column at a temperature of $35^{\circ}C$. This developed HPLC-UV method provides an adequate linearity ($r^2$ > 0.999), repeatability (relative standard deviation, RSD < 2.98%), and inter- and intraday variations (RSD < 4.40%) with recovery (98.7-106.1%) of seven saponins concerned. This validated method was also conducted to determine seven components in 10 batches of PNL. Conclusion: These findings are beneficial to the quality control of PNL and its relevant products.