• Title/Summary/Keyword: normalized difference water index

Search Result 149, Processing Time 0.027 seconds

Land-cover Change detection on Korean Peninsula using NOAA AVHRR data (NOAA AVHRR 자료를 이용한 한반도 토지피복 변화 연구)

  • 김의홍;이석민
    • Spatial Information Research
    • /
    • v.4 no.1
    • /
    • pp.13-20
    • /
    • 1996
  • This study has been on detection of land-cover change on Korean peninsula (including the area of north Korean territory) between May of 1990 year and that of 1995 year using NOAA AVHRR data. It was necessary that imagery data should be registered to each other and should not be deviated much in seasonal variation in order to recognize land - cover change. Atmosphic effect such as clould and dirt was erased by maximum NDVI(Normalized Difference Vegetation Index) method the equation of which was as following $$NDVI(i,j,d)=\frac{ch2(j,j,d)-ch1(i,j,d)}{ch2(i,j,d)+ch1(i.j,d)}$$ Each image of maximum NDVI of '90 year and '95 year was c1assifed onto 8 categories ,using iso-clustering method each of which was water, wet barren and urban, crop field, field, mixed vegetation, shrub, forest and evergreen.

  • PDF

Analysis of Land Cover Changes Based on Classification Result Using PlanetScope Satellite Imagery

  • Yoon, Byunghyun;Choi, Jaewan
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.4
    • /
    • pp.671-680
    • /
    • 2018
  • Compared to the imagery produced by traditional satellites, PlanetScope satellite imagery has made it possible to easily capture remotely-sensed imagery every day through dozens or even hundreds of satellites on a relatively small budget. This study aimed to detect changed areas and update a land cover map using a PlanetScope image. To generate a classification map, pixel-based Random Forest (RF) classification was performed by using additional features, such as the Normalized Difference Water Index (NDWI) and the Normalized Difference Vegetation Index (NDVI). The classification result was converted to vector data and compared with the existing land cover map to estimate the changed area. To estimate the accuracy and trends of the changed area, the quantitative quality of the supervised classification result using the PlanetScope image was evaluated first. In addition, the patterns of the changed area that corresponded to the classification result were analyzed using the PlanetScope satellite image. Experimental results found that the PlanetScope image can be used to effectively to detect changed areas on large-scale land cover maps, and supervised classification results can update the changed areas.

An Analysis on the Usability of Unmanned Aerial Vehicle(UAV) Image to Identify Water Quality Characteristics in Agricultural Streams (농업지역 소하천의 수질 특성 파악을 위한 UAV 영상 활용 가능성 분석)

  • Kim, Seoung-Hyeon;Moon, Byung-Hyun;Song, Bong-Geun;Park, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.10-20
    • /
    • 2019
  • Irregular rainfall caused by climate change, in combination with non-point pollution, can cause water systems worldwide to suffer from frequent eutrophication and algal blooms. This type of water pollution is more common in agricultural prone to water system inflow of non-point pollution. Therefore, in this study, the correlation between Unmanned Aerial Vehicle(UAV) multi-spectral images and total phosphorus, total nitrogen, and chlorophyll-a with indirect association of algal blooms, was analyzed to identify the usability of UAV image to identify water quality characteristics in agricultural streams. The analysis the vegetation index Normalized Differences Index (NDVI), the Normalized Differences Red Edge(NDRE), and the Chlorophyll Index Red Edge(CIRE) for the detection of multi-spectral images and algal blooms collected from the target regions Yang cheon and Hamyang Wicheon. The analysis of the correlation between image values and water quality analysis values for the water sampling points, total phosphorus at a significance level of 0.05 was correlated with the CIRE(0.66), and chlorophyll-a showed correlation with Blue(-0.67), Green(-0.66), NDVI(0.75), NDRE (0.67), CIRE(0.74). Total nitrogen was correlated with the Red(-0.64), Red edge (-0.64) and Near-Infrared Ray(NIR)(-0.72) wavelength at the significance level of 0.05. The results of this study confirmed a significant correlations between multi-spectral images collected through UAV and the factors responsible for water pollution, In the case of the vegetation index used for the detection of algal bloom, the possibility of identification of not only chlorophyll-a but also total phosphorus was confirmed. This data will be used as a meaningful data for counterplan such as selecting non-point pollution apprehensive area in agricultural area.

Identification of Aquatic Plants in the Muncheon Water Reservoir Using Drone-based Information (드론원격정보를 활용한 저수지 수생식물 분포 파악: 경북 문천저수지에서의 적용 예)

  • Lee, Geun-Sang;Kim, Sung-Wook;Lee, Khil-Ha
    • Journal of Environmental Science International
    • /
    • v.26 no.5
    • /
    • pp.685-689
    • /
    • 2017
  • Aquatic plants serve the crucial function of helping to balance water reservoir ecosystem, as they filter and remove major minerals required for algal growth such as nitrogen, ammonia, and nitrates. Aquatic plants provide food, shade, and protection for the aquatic biome in and around the reservoir. Thus, it is important to accurately determine the existence and areal extent of the aquatic plants. In the present study drone-based facilities were used for this purpose. In the Muncheon water reservoir, Gyeongbuk, the Normalized Difference Vegetation Index (NDVI) and Surface Algal Bloom Index (SABI) were used to determine the existence status of the aquatic plants. The data so obtained exhibited reasonable accuracy; drone-based facilities can be used in future to identify the areal extent of aquatic plants.

Agricultural drought monitoring using the satellite-based vegetation index (위성기반의 식생지수를 활용한 농업적 가뭄감시)

  • Baek, Seul-Gi;Jang, Ho-Won;Kim, Jong-Suk;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.4
    • /
    • pp.305-314
    • /
    • 2016
  • In this study, a quantitative assessment was carried out in order to identify the agricultural drought in time and space using the Terra MODIS remote sensing data for the agricultural drought. The Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) were selected by MOD13A3 image which shows the changes in vegetation conditions. The land cover classification was made to show only vegetation excluding water and urbanized areas in order to collect the land information efficiently by Type1 of MCD12Q1 images. NDVI and EVI index calculated using land cover classification indicates the strong seasonal tendency. Therefore, standardized Vegetation Stress Index Anomaly (VSIA) of EVI were used to estimated the medium-scale regions in Korea during the extreme drought year 2001. In addition, the agricultural drought damages were investigated in the country's past, and it was calculated based on the Standardized Precipitation Index (SPI) using the data of the ground stations. The VSIA were compared with SPI based on historical drought in Korea and application for drought assessment was made by temporal and spatial correlation analysis to diagnose the properties of agricultural droughts in Korea.

Estimation of Spatio-temporal soil moisture and drought index based on MODIS multi-satellite images (MODIS 다중 위성영상 기반의 토양수분 및 가뭄지수 산정연구)

  • Chung, Jeehun;Kim, Juyeon;Kim, Hyeongseok;Jeong, Daeun;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.446-446
    • /
    • 2022
  • 본 연구에서는 MODIS(MODerate resolution Imaging Spectroradiometer) 다중 위성영상을 기반으로 전국 시공간 토양수분 및 토양수분 기반의 가뭄지수 SWDI(Soil Water Deficit Index)를 산정하였다. 시공간 토양수분의 산정을 위해 입력자료로 MODIS 위성의 지표면온도(Land Surface Temperature, LST), 증발산 및 식생(Enhanced Vegetation Index, EVI; Fraction of Photosynthetically Active Radiation, FPAR; Leaf Area Index, LAI; Normalized Difference Vegetation Index, NDVI) 관련 산출물 자료와 지상 관측자료인 일 단위 강수량 자료를 구축하였다. MODIS 위성영상은 산출물별로 제공되는 QC(Quality Control) 영상을 활용해 보정을 수행하였고, 공간 강수량 자료는 기상청에서 제공하는 전국 92개 지점의 종관기상관측자료를 구축하여 공간보간기법인 역거리가중법을 적용해 생성하였다. 실측 토양수분은 농촌진흥청에서 제공하는 76개 지점의 토양 깊이 10 cm에 설치된 TDR(Time Domain Reflectomerty) 센서에서 측정된 토양수분 자료를 활용하였으며, 토양수분 모의 시 토양 속성을 고려하기 위해 국립농업과학원에서 제공하는 토양도를 구축하여 활용하였다. 토양수분 산정 모형은 다중선형회귀모형(Multiple Linear Regression Model, MLRM)을 활용하였으며, 계절 및 토성에 따른 회귀식을 산정하였다. 회귀식 기반의 토양수분과 토성별 포장용수량 및 영구위조점 값을 이용하여 SWDI를 산정하고, 실제 가뭄 발생 시기 및 지역과의 비교하고자 한다.

  • PDF

Relating Hyperspectral Image Bands and Vegetation Indices to Corn and Soybean Yield

  • Jang Gab-Sue;Sudduth Kenneth A.;Hong Suk-Young;Kitchen Newell R.;Palm Harlan L.
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.3
    • /
    • pp.183-197
    • /
    • 2006
  • Combinations of visible and near-infrared (NIR) bands in an image are widely used for estimating vegetation vigor and productivity. Using this approach to understand within-field grain crop variability could allow pre-harvest estimates of yield, and might enable mapping of yield variations without use of a combine yield monitor. The objective of this study was to estimate within-field variations in crop yield using vegetation indices derived from hyperspectral images. Hyperspectral images were acquired using an aerial sensor on multiple dates during the 2003 and 2004 cropping seasons for corn and soybean fields in central Missouri. Vegetation indices, including intensity normalized red (NR), intensity normalized green (NG), normalized difference vegetation index (NDVI), green NDVI (gNDVI), and soil-adjusted vegetation index (SAVI), were derived from the images using wavelengths from 440 nm to 850 nm, with bands selected using an iterative procedure. Accuracy of yield estimation models based on these vegetation indices was assessed by comparison with combine yield monitor data. In 2003, late-season NG provided the best estimation of both corn $(r^2\;=\;0.632)$ and soybean $(r^2\;=\;0.467)$ yields. Stepwise multiple linear regression using multiple hyperspectral bands was also used to estimate yield, and explained similar amounts of yield variation. Corn yield variability was better modeled than was soybean yield variability. Remote sensing was better able to estimate yields in the 2003 season when crop growth was limited by water availability, especially on drought-prone portions of the fields. In 2004, when timely rains during the growing season provided adequate moisture across entire fields and yield variability was less, remote sensing estimates of yield were much poorer $(r^2<0.3)$.

Application of VIIRS land products for agricultural drought monitoring (농업가뭄 모니터링을 위한 VIIRS 센서 지표산출물 적용성 분석)

  • Sur, Chanyang;Nam, Won-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.729-735
    • /
    • 2023
  • The Moderate resolution Imaging Spectroradiometer (MODIS) is a multispectral sensor that has been actively researched in various fields using diverse land and atmospheric products. MODIS was first launched over 20 years ago, and the demand for novel sensors that can produce data comparable to that obtained using MODIS has continuously increased. In this study, land products obtained using the Visible Infrared Imaging Radiometer Suite (VIIRS) of the Suomi National Polar-orbiting Partnership (Suomi NPP) satellite launched in 2011 were introduced, including land surface temperature and vegetation indices such as the normalized difference vegetation index and enhanced vegetation index. These land products were compared with existing data obtained using MODIS to verify their local applicability in South Korea. Based on spatiotemporal monitoring of an extreme drought period in South Korea and the application of VIIRS land products, our results indicate that VIIRS can effectively replace MODIS multispectral sensors for agricultural drought monitoring.

Estimation of Water Balance based on Satelite Date in the Korean Peninsula

  • Shin, Sha-Chul;Sawamoto masaki, Sawamoto-Masaki
    • Korean Journal of Hydrosciences
    • /
    • v.8
    • /
    • pp.97-110
    • /
    • 1997
  • Quantifying water balance components is crucial to understanding the basic hydrology and hydrochemistry. An importance of water balace studies has been emphasized from the need to grasp the actual condition of water resources and environmental changes including climatic changes. This paper proposes a method for evaluating water balance components based on the vegetation monitor using remote sensing data. Here, the evapotranspiration model adopts a direct method by using NDVI(Normalized Difference Vegetation Index) calculated from NOAA/AVHRR data and a detailed descriptionof water balance by using the evapotranspiration over the Korean Peninsula. In the study, areal distribution data sets of water balance components are produced using NDVI and a simplified water balance model. This method enables one to discuss the hydrological problems for North Korea where insufficient meteorological and hydrological data exist. The results obtained indicate the specific regional features on water inventory and fluctuation in water balance.

  • PDF

Development of a Grid-Based Daily Land Surface Temperature Prediction Model considering the Effect of Mean Air Temperature and Vegetation (평균기온과 식생의 영향을 고려한 격자기반 일 지표토양온도 예측 모형 개발)

  • Choi, Chihyun;Choi, Daegyu;Choi, Hyun Il;Kim, Kyunghyun;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.137-147
    • /
    • 2012
  • Land surface temperature in ecohydrology is a variable that links surface structure to soil processes and yet its spatial prediction across landscapes with variable surface structure is poorly understood. And there are an insufficient number of soil temperature monitoring stations. In this study, a grid-based land surface temperature prediction model is proposed. Target sites are Andong and Namgang dam region. The proposed model is run in the following way. At first, geo-referenced site specific air temperatures are estimated using a kriging technique from data collected from 60 point weather stations. Then surface soil temperature is computed from the estimated geo-referenced site-specific air temperature and normalized difference vegetation index. After the model is calibrated with data collected from observed remote-sensed soil temperature, a soil temperature map is prepared based on the predictions of the model for each geo-referenced site. The daily and monthly simulated soil temperature shows that the proposed model is useful for reproducing observed soil temperature. Soil temperatures at 30 and 50 cm of soil depth are also well simulated.