• Title/Summary/Keyword: normal plate

Search Result 684, Processing Time 0.023 seconds

A Study on Fatigue Life of Weld Method for Excavator Bucket (굴삭기 버킷 용접부의 피로수명에 관한 연구)

  • Park, K.D.;Jung, J.W.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.102-109
    • /
    • 2005
  • An attachment part of the construction equipment frequently claimed from the crack occurrence that takes especially at the bucket. therefore we execute the fatigue examination and changes the welding method at the same materials. we executed a fatigue crack propagation experiment and got the conclusions at the normal temperature and Frequency 10Hz. We carried out butt welding for structure steel of SM490A and make three kinds of specimen of different weld method each. The fatigue limit of CASE 1 was determined to the low than CASE 2, CASE 3. the CASE 2 putting the interval of the 2mm creates back plate and make fatigue limit to high. Bead shapes and weld surfaces shape influence on fatigue life of materials. Specially, the crack growth becomes starting point that gap of back-plate and boundary surface of bead. It is confirmed by fracture showing on this study.

  • PDF

Study to Fatigue Safety of Housing using 3-D FEM (3D-FEM을 이용한 후판하우징의 피로안정성에 대한 연구)

  • Moon, C.H.;Seo, J.H.;Ko, S.H.;Chun, M.S.;Park, H.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.04a
    • /
    • pp.23-26
    • /
    • 2009
  • The purpose of this study is to investigate the fatigue safety and deformation of housing in plate rolling process. For this, we carried out 3-dimensional FEM analysis for housing considering design variations of housing structure. It showed that the housing with rounds under a column is benefits to control thickness accuracy of rolled material, due to smaller elastic deformation and maximum effective stress. Also, we calculated the fatigue safety factors, the ratios of the pulsating equivalent fatigue limit to the maximum tensile stresses analyzed using the equipment force and normal rolling force.

  • PDF

A comparison study for the Axial forte of Longer Rail (장척레일 축력 비교 연구)

  • Min, Kyung-Ju;Lee, Sung-Uk;Park, Dae-Hee
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.516-528
    • /
    • 2009
  • Form the application of long rail system the non-ballast steel plate bridges, fatigue strength increase and rail noise reduction can be expected. This is mainly form the reduction of the rail impact at the rail joint locations which already made to behave together from welds. In the high speed rail, application of long rail system is essential because without long rail system, the required serviceability level can not be achieved. But even with this long rail systems, the thermal expansion from the girder can not be absorbed in the normal bearing systems, and these expansion cause between girder and rail. Also unexpected rail buckling and fracture through rail thermal tension may happen. It was found through numerical analysis and field measurement that these problems can be avoided by semi-fixed bearing system. In this study, the benefits of non-ballast plate bridge through long rail system, especially at the point of girder stability, girder stiffness increase and bearing maintenance will be reviewed.

  • PDF

Welding deformation analysis based on improved equivalent strain method considering the effect of temperature gradients

  • Kim, Tae-Jun;Jang, Beom-Seon;Kang, Sung-Wook
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.157-173
    • /
    • 2015
  • In the present study, the existing equivalent stain method is improved to make up for its weaknesses. The improved inherent strain model is built considering more sophisticated three dimensional constraints which are embodied by six cubic elements attached on three sides of a core cubic element. From a few case studies, it is found that the inherent strain is mainly affected by the changes in restraints induced by changes of temperature-dependent material properties of the restraining elements. On the other hand, the degree of restraints is identified to be little influential to the inherent strain. Thus, the effect of temperature gradients over plate thickness and plate transverse direction normal to welding is reflected in the calculation of the inherent strain chart. The welding deformation can be calculated by an elastic FE analysis using the inherent strain values taken from the inherent strain chart.

Dynamic stress intensity factors for two parallel cracks in an infinite orthotropic plate subject to an impact load

  • Itou, Shouetsu
    • Structural Engineering and Mechanics
    • /
    • v.33 no.6
    • /
    • pp.697-708
    • /
    • 2009
  • Stresses are solved for two parallel cracks in an infinite orthotropic plate during passage of incoming shock stress waves normal to their surfaces. Fourier transformations were used to reduce the boundary conditions with respect to the cracks to two pairs of dual integral equations in the Laplace domain. To solve these equations, the differences in the crack surface displacements were expanded to a series of functions that are zero outside the cracks. The unknown coefficients in the series were solved using the Schmidt method so as to satisfy the conditions inside the cracks. The stress intensity factors were defined in the Laplace domain and were inverted numerically to physical space. Dynamic stress intensity factors were calculated numerically for selected crack configurations.

Feasibility Study on the New Structure of a Spindle Motor for Hard Disk Drive

  • Kim, Tae-Woo;Chang, Jung-Hwan
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.295-299
    • /
    • 2013
  • This paper presents the new structure of a spindle motor for hard disk drive (HDD). It can produce axial force as well as torque without a pulling plate or a pulling magnet required for the normal operation of a hydrodynamic bearing in rotating-shaft structure. The proposed models have different air gap length along the axial direction by changing the thickness of permanent magnet (PM). One has a single slope and the other has double slopes on the surface of PM. For the design of the proposed models, variables are defined and its effects on the motor performances are investigated by 3-demensional finite element analysis (FEA). The equi-performance curves are investigated for the main characteristics of the spindle motor such as generated torque, axial force and torque ripple ratio. The validity of the proposed models is verified by the feasibility study and performance evaluation.

Elastic Shear Buckling Characteristic of Trapezoidally Corrugated Plates (제형파형 Plate의 탄성전단좌굴 특성)

  • 윤상열;김성남;한택희;강영종
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.709-714
    • /
    • 2002
  • Recently, the applications of corrugated plates(or folded plates) are increasing due to economic and structural advantages in certain situations. And, because of the higher strength of corrugated plates than flat plates, the usage of the corrugated plates is increasing. So there are many necessities for specifications of corrugated plates. For flat plates, there are many design details in almost specifications. However, there are no detail design guides such as shear strength except the bending strength and the normal strength. So, it is difficult for engineers to design structures consist of corrugated plates. Therefore, a provision is necessary for engineers to refer for designing corrugated plates. The conclusion of this study shows a formula that helps to determine the shear strength of corrugated plates under various geometric conditions ; the size of corrugation ; the curvature of corrugation and ; the thickness of the corrugated plate. Also, it shows that corrugated plates have higher shear buckling strength than flat plates.

  • PDF

A Research on the Noise Reduction of Range Hood for Household (가정용 레인지 후드의 소음저감에 관한 연구)

  • Hong, Byung-Kuk;Song, Hwa-Young;Lee, Dong-Hoon;Lee, Chang-Kun;Kim, Dong-Yun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.449-452
    • /
    • 2005
  • This paper introduces a study for the noise reduction of a range hood for household. Generally, range hoods have a built-in sirocco fan from which squawky noises are generated. Though the squawky noises have low noise level, these kinds of noises make most of the users nervous. For the purpose of noise reduction, in this study, a perforated plate system is installed in the fan housing of range hood. From the experimental results, it is confirmed that the noise level omitted front the range hood is decreased above 2dB(A) in all frequency regions due to the effect of noise reduction by perforated panel system.

  • PDF

Influence of the distribution shape of porosity on the bending FGM new plate model resting on elastic foundations

  • Hadj, Bekki;Rabia, Benferhat;Daouadji, Tahar Hassaine
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.61-70
    • /
    • 2019
  • The functionally graded materials (FGM) used in plates contain probably a porosity volume fraction which needs taking into account this aspect of imperfection in the mechanical bahavior of such structures. The present work aims to study the effect of the distribution forms of porosity on the bending of simply supported FG plate reposed on the Winkler-Pasternak foundation. A refined theory of shear deformation is developed to study the effect of the distribution shape of porosity on static behavior of FG plates. It was found that the distribution form of porosity significantly influence the mechanical behavior of FG plates, in terms of deflection, normal and shear stress. It can be concluded that the proposed theory is simple and precise for the resolution of the behavior of flexural FGM plates resting on elastic foundations while taking into account the shape of distribution of the porosity.

Development of Waterproof Acoustic Sensor for Shockwave Measurement (탄환 충격파 측정용 방수 음향센서 개발)

  • Hur, Shin;Lee, Duck-Gyu
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.318-322
    • /
    • 2019
  • In shooting training, an impact point identification system that uses the impact wave of the bullet to check the impact point in the target plate has been recently used. Acoustic sensors used in these systems must be able to detect shock waves of high sound pressure levels and be both waterproof and dustproof for rainy weather and dusty environments, respectively. In this study, membranes with excellent waterproof, dustproof, and sound transmitting characteristics were selected through a characteristics test; a protection cap was installed to install the selected materials. After coupling the produced protection cap to the acoustic sensor housing, the sensitivity and phase characteristics of the acoustic sensor were checked. Through the waterproof and dustproof test, the performances of its sensitivity and phase characteristics were confirmed. Finally, the normal shockwave of a 5.56 mm diameter bullet was measured using a shockwave detection signal collecting plate equipped with a prototype of the acoustic sensor at a 100 m firing range.