• Title/Summary/Keyword: normal operation state

Search Result 169, Processing Time 0.026 seconds

ELF Electric and Magnetic Fields under the Transmission Line Including Electric Power System States (계통상태를 고려한 송전선의 ELF 전자계)

  • 김두현;김상철
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.3
    • /
    • pp.89-96
    • /
    • 1996
  • This paper presents a study on the analysis and evaluation for ELF( Extremely Low Frequency) electric and magnetic fields under the transmission line according to the power system states. The power system states are classified into two types, normal state resulting from normal operation and alert state from outages. The current in a system is changed continually owing to the load fluctuations even in a normal operation. To calculate the current of the concerned line in a normal state, the system load level is devided into light, base and heavy load level. In case of contingency, an efficient algorithm based on matrix inversion lemma is developed to figure out the current changes. In order to analyze the variations of ELF field caused by the current fluctuations the electrostatic field approach which is far simpler than the electromagnetic field one based on Maxwell equation is introduced in this paper. The suggested method is applied to the IEEE 14 bus system to demonstrate the usefulness.

  • PDF

The Power Flow Control of UPFC for Cost Minimization

  • Lim, Jung-Uk;Moon, Seung-Il
    • KIEE International Transactions on Power Engineering
    • /
    • v.12A no.1
    • /
    • pp.31-35
    • /
    • 2002
  • This paper presents a new operation scheme of UPFC to minimize both generation costs and active power losses in a normal operation state of power system. In a normal operation, cost minimization is a matter of primary concern among operating objectives. This paper considers two kinds of costs, generation costs and transmission losses. The total generation cost of active powers can be minimized by optimal power flow, and active power losses in the transmission system can be also minimized by power flow control of UPFC incorporated with minimization of generation costs. In order to determine amounts of active power reference of each UPFC required for the cost minimization, an iterative optimization algorithm based on the power flow calculation using the decoupled UPFC model is proposed. For verification of the proposed method, intensive studies have been performed on a 3-unit 6-bus system equipped with a UPFC.

A Study of Voltage Control for Lower Side Parallel Transformer (병렬운전 변압기 전압제어 및 저압축 모선보호방식연구)

  • Yun, Gi-Seob;Baek, Seung-Do;Choi, Hyuck-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.233-236
    • /
    • 2001
  • Parallel operation scheme to several transformers is adopted because of the load increase, economic problem, or load shedding. For the transformer's parallel operation, loads proportional to each transformer's capacity must be allotted, and circulation currents must be limited as much as without causing any problem in a real operation. But, both transformers in parallel operation can be tripped when either faults at lower voltage side of a transformer or faults in a bus occurs. Therefore, parallel operation scheme to distribution transformers in Korea is not adopted in a normal state but only when loaded or load-shedded. These are due to the insufficiency of the construction in communication network and AVR scheme. Besides that, those are because bus bar protection scheme to lower voltage side of a transformer is not applied. In spite of enormous initial investment costs, advanced countries take so much account of power system reliability and stable supply that they adopt the parallel operation scheme in a normal state. One of the problems in parallel operation is the overheat of transformers due to the excessive circulation currents. This paper presents the scheme that controls voltages between both transformers using circulation currents that occurs in parallel operation.

  • PDF

A Study on the Electrical and Heat Generation Characteristics of an Induction Motor under Restrained Operation (유도전동기의 구속운전에 따른 전기 및 발열 특성 연구)

  • Jong-Chan Lee;Doo-Hyun Kim;Sung-Chul Kim
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.1
    • /
    • pp.25-33
    • /
    • 2023
  • In this study, we determined the failure rate and fire status of electric motors widely used in domestic and industrial devices and analyzed the associated fire risks by identifying the electrical and temperature characteristics of electric motors under the normal and restrained operation modes in industrial sites and laboratories. A 2.2kW motor used for driving a conveyor during the vulcanization process in a rubber product manufacturing plant was employed as the study object and was exposed to a high- temperature environment as this motor is widely used in industrial sites. The current amplitude was 4.45-4.50 A during normal operation and 38.2-41.5 A during restrained operation due to the pinching of products and semi-finished products (i.e., 8.5 times higher than that during normal operation). The leakage current amplitude was 0.33 mA during both operation modes. The temperature of the workplace in summer was 42.38℃, indicating a poor environment for the installed motor. In the laboratory, the current and temperature of the coil inside a 3.7kW motor were measured under the restrained operation mode as performing measurements of the coil inside the motor in industrial sites is challenging. The current amplitude during normal operation was 3.5 A, whereas that during restrained operation for 30 s was 51.7-58.6 A, which is 14.8-16.7 times higher than that of normal operation. Moreover, the temperature of the motor coil increased from 22.9℃ to 101℃. Based on the experimental data, we derived the temperature increase formula according to the restrained operation time by performing a regression analysis and verified the time at which the temperature exceeded the stipulated limit for the insulation grade. The findings presented in this paper can be utilized to establish fire-prevention measures and perform safety management of motors of the same type or with a similar capacity.

Real operation of 2 kW class reverse-Brayton refrigeration system with using scroll compressor package

  • Kim, Hyobong;Yeom, Hankil;Choo, Sangyoon;Kim, Jongwoo;Park, Jiho;In, Sehwan;Hong, Yong-Ju;Park, Seong-Je;Ko, Junseok
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.4
    • /
    • pp.40-44
    • /
    • 2020
  • This paper describes the real operation of 2 kW class reverse-Brayton refrigeration system with neon as a working fluid. The refrigeration cycle is designed with operating pressure of 0.5 and 1.0 MPa at low and high pressure side, respectively. Compressor package consists of several helium scroll compressors witch are originally used for driving GM cryocooler. Three segments of plate heat exchanger are adopted to cover the wide temperature range and the refrigeration power is produced by turbo expander. The developed refrigeration system is successfully operated at its target temperature of 77 K. In experiments, all parameters such as pressure, temperature, mass flow rate and valve opening are measured to investigate characteristics during cool-down process and normal state. The difference between design and real operation is discussed with measured experimental data. At normal state of 77 K operation, the developed reverse-Brayton refrigeration system shows 1.83 kW at 68.2 K of cold-end temperature.

Energy Balance Analysis of Electrical Power System for Communication Satellite (통신방송위성 전력시스템의 Energy Balance 해석)

  • Choi Jae-dong;Koo Cheol-hea
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.81-84
    • /
    • 2001
  • In the power system of a satellite, solar array and a battery have directly impact on the life time of the satellite, and their stable operation is decided by whether their states are in the steady state operation or not. In this study, solar array capacity and battery characteristics of proposed communication satellite are designed and simulation is conducted according to the operation mode. Each operation mode is classified as the normal and worst case modes, respectively. The normal mode is analyzed under daylight and the eclipse with the EHT burn, and the worst case modes which have solar cell circuit failure, and battery cell failure are analyzed too.

  • PDF

Comparison of serum isoenzyme levels of CPK and LDH in patients ungergoing thoracic operations (흉부수술 환자에서의 CPK 와 LDH I soenzyme 의 변화)

  • 이영욱
    • Journal of Chest Surgery
    • /
    • v.15 no.4
    • /
    • pp.460-466
    • /
    • 1982
  • A analysis of CPK & LDH Isoenzyme was done on the consecutive patients undergoing thoracic operations from July 1982 to October 1982 in the Department of Thoracic and Cardiovascular Surgery, Capital Armed Forces General Hospital. Eighteen patients were analysed by three groups, such as open heart surgery [group A], major thoracic operation [group B] , minor thoracic operation group [group C]. In all patients serial determination of total level and Isoenzyme of CPK, LDH wad done on preoperative operative and up to 8th post-operative day, The results obtained are as follows. 1. The average value of serum CPK before the operation was 61 IU/L. The value of serum CPK was increased following the operation mainly MM portion and reached to the maximal level of 536107 IU/L in A group 1200191 IU/L in B group, 306150 IU/L in C group on the first postoperative day. The enzyme activity was gradually decreased thereafter and returned to the normal range on the 3rd or 4th day after the operation. 2. The average value of serum LDH before the operation was found to be 83 IU/L. The value was increased during the operation and reached to the maximal level of 481108 IU/L in group A, 14827 I U/L in group B, 10035 IU/L in group C on the second day after the operation. The enzyme activity was gradually decreased thereafter and returned to the normal range on the seventh day after the operation. The enzyme activity was dependent to the duration of operation, severity of muscle damage, type of thoracotomy, effect of extracorporeal circulation, state of disease.

  • PDF

DSP based Real-Time Fault Determination Methodology using Artificial Neural Network in Smart Grid Distribution System (스마트 그리드 배전계통에서 인공신경회로망을 이용한 DSP 기반 실시간 고장 판단 방법론 기초 연구)

  • Jin-Eun Kim;Yu-Rim Lee;Jung-Woo Choi;Byung-Hoon Roh;Yun-Seok Ko
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.817-826
    • /
    • 2023
  • In this paper, a fault determination methodology based on an artificial neural network was proposed to protect the system from faults on the lines in the smart grid distribution system. In the proposed methodology, first, it was designed to determine whether there is a low impedance line fault (LIF) based on the magnitude of the current RMS value, and if it is determined to be a normal current, it was designed to determine whether a high impedance ground fault (HIF) is present using Normal/HIF classifier based on artificial neural network. Among repetitive DSP module-based algorithm verification tests, the normal/HIF classifier recognized the current waveform as normal and did not show reclosing operation for the cases of normal state current waveform simulation test where the RMS value was smaller than the minimum operating current value. On the other hand, for the cases of LIF where RMS value is greater than the minimum operating current value, the validity of the proposed methodology could be confirmed by immediately recognizing it as a fault state and showing reclosing operation according to the prescribed procedure.

Investigation on effect of neutron irradiation on welding residual stresses in core shroud of pressurized water reactor

  • Jong-Sung Kim;Young-Chan Kim;Wan Yoo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.80-99
    • /
    • 2023
  • This paper presents the results of investigating the change in welding residual stresses of the core shroud, which is one of subcomponents in reactor vessel internals, performing finite element analysis. First, the welding residual stresses of the core shroud were calculated by applying the heat conduction based lumped pass technique and finite element elastic-plastic stress analysis. Second, the temperature distribution of the core shroud during the normal operation was calculated by performing finite element temperature analysis considering gamma heating. Third, through the finite element viscoelastic-plastic stress analysis using the calculated temperature distribution and setting the calculated residual stresses as the initial stress state, the variation of the welding residual stresses was derived according to repeating the normal operation. In the viscoelastic-plastic stress analysis, the effects of neutron irradiation on mechanical properties during the cyclic normal operations were considered by using the previously developed user subroutines for the irradiation agings such as irradiation hardening/embrittlement, irradiation-induced creep, and void swelling. Finally, the effect of neutron irradiation on the welding residual stresses was analysed for each irradiation aging. As a result, it is found that as the normal operation is repeated, the welding residual stresses decrease and show insignificant magnitudes after the 10th refueling cycle. In addition, the irradiation-induced creep/void swelling has significant mitigation effect on the residual stresses whereas the irradiation hardening/embrittlement has no effect on those.

Fuzzy Based Approach for the Safety Assessment of Human Body under ELF EM field Considering Power System States

  • Kim, Sang C.;Kim, Doo H.
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1997.11a
    • /
    • pp.117-122
    • /
    • 1997
  • This paper presents a study on the fuzzy based approach for the safety assessment of human body under ELF electric and magnetic(EM) field considering power system states. The analysis of ELF EM field based on quasi-static method is introduced. UP to the present, the analysis of ELF EM field has been conducted with the consideration of one transmission line, or a power line model only In this paper, however, the power system is included to model the expected and/or unexpected uncertainty caused by the load fluctuation and parameter changes and the states are classified into two types, normal state resulting from normal operation and emergency state from outages. In order to analyze the uncertainty in the normal state, the Monte Carlo Simulation, a statistic approach was introduced and line current and bus voltage distribution are calculated by a contingency analysis method, in the emergency state. To access the safety of human body, the approach based on fuzzy linguistic variable is adopted to overcome the shortcomings of the assessment by a crisp set concept. In order to validate the usefulness of the approach suggested herein, the case study using a sample system with 765(kV) was done. The results are presented and discussed.

  • PDF