• Title/Summary/Keyword: normal mode

Search Result 1,025, Processing Time 0.026 seconds

Normal Mode Studies for Solids HF, HCl and Polyethylene According to the Pseudolattice Method

  • Chang, Man-Chai;John, Mu-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.2
    • /
    • pp.68-73
    • /
    • 1985
  • Normal modes of solids HF, HCl and polyethylene having the exciting spectrometric phenomena have been evaluated by taking the lowest temperature phase of these species in the solid. The solids HF and HCl have the same space group as C$_{2}{\nu}$, and polyethylene has a space group with D$_{2h}$. The normal modes were obtained by the valence force field with modified force constants and a quantitative description of the normal mode is adjusted by the potential energy distribution (PED). From the PED, the most fittable force constants are also obtained. We have intended to calculate the normal modes by using the smallest size of the model and the simple computational process. To remove the edge effects being occurred in constructing the single cluster model, different from the boundary condition being generally used up to now, the idea of pseudolattice method being successfully applied to MO calculations of solid was extended to normal mode analysis in order to give the same environment for all moecules in a chosen cluster. By using the above valence force field and boundary condition, we obtain the assigned frequencies and compare those results with the results obtained by others.

Normal Mode Vibrations of a Beam with a Nonlinear Boundary Condition (비선형 경계조건을 가진 보의 정규모드진동)

  • 김현기;이원경
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.392-398
    • /
    • 1998
  • In order to check the validity of nonlinear normal modes of continuous, systems by means of the energy-based formulation, we consider a beam with a nonlinear boundary condition. The initial and boundary e c6nsl of a linear partial differential equation and a nonlinear boundary condition is reduced to a linear boundary value problem consisting of an 8th order ordinary differential equations and linear boundary conditions. After obtaining the asymptotic solution corresponding to each normal mode, we compare this with numerical results by the finite element method.

  • PDF

Local and Normal Modes of OH Stretching Vibration in Hydrogen-Bonded Water Molecules (수소 결합한 물 분자에서 OH 신축 진동의 국소모드와 정규모드)

  • Kwon, Seeun;Yang, Mino
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.6
    • /
    • pp.350-353
    • /
    • 2020
  • The validity of the calculation method based on the local mode in hydrogen-bonded water molecules was investigated by comparing the frequencies of the local and normal modes of OH stretching vibration in water molecules. By calculating a monomer, dimer, and trimer of water molecules using a quantum chemical ab initio theory, we examined how the frequencies of the local and normal modes and the anharmonicity of local modes vary with molecular cluster size. It was shown that, as the number of molecules increases from monomer to trimer, the anharmonicity of OH bonds increases and the difference between local and normal mode frequencies decreases. This confirms that local-mode-based calculations that can easily handle the anharmonicity can be appropriate for the calculation of the OH stretching frequency of water molecules in the condensed phase.

Sensor Node Control Considering Energy-Efficiency in Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율성을 고려한 센서 노드 제어)

  • Park, Hee-Dong
    • Journal of Digital Convergence
    • /
    • v.12 no.2
    • /
    • pp.271-276
    • /
    • 2014
  • The life-time and performance of a wireless sensor network is closely related to energy-efficiency of sensor nodes. In this paper, to increase energy-efficiency, each sensor node operates in one of three operational modes which are normal, power-saving, and inactive. In normal mode sensor nodes sense and transmit data with normal period, whereas sensor nodes in power-saving mode have three-times longer period. In inactive mode, sensor nodes do not sense and transmit any data, which makes the energy consumption to be minimized. Plus, the proposed algorithm can avoid unnecessary energy consumption by preventing transmitting duplicate sensed data. We implemented and simulated the proposed algorithm using Tiny OS based ZigbeX platfom and NS-2, respectively. Performance evaluation results show that the proposed algorithm can prolong sensor networks' lifespan by efficiently reducing energy consumption and its standard deviation of all sensor nodes.

Design of EMI filters for an Induction Motor Drive System with Multi-level inverters (멀티레벨 인버터를 이용한 3상 유도전동기 구동 시스템의 EMI 필터 설계)

  • Kim, Soo-Hong;Ahn, Young-Oh;Bang, Sang-Seok;Kim, Kwang-Seob;Kim, Yoon-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.5
    • /
    • pp.265-270
    • /
    • 2006
  • In this paper EMI problems with induction motor drive system using multi-level inverters are investigated. The high power multi-level inverter usually operates with low switching frequency and produces large noises. Generally, EMI consists of the conduction component through source lines and emission component emitted to the space. This conduction component can be classified to the common-mode between source line and ground, and the normal-mode between lines. The EMI filters for the induction motor drive system are designed and implemented to reduce EMI noise. Finally the designed system is verified by the experiment. The experimental results show that both the normal mode and common mode noises are greatly reduced compared to the system without filters.

Dynamic analysis of a flexible multibody system

  • Chae Jang-Soo;Park Taw-Won;Kim J.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.21-25
    • /
    • 2005
  • In the dynamic analysis of a mechanism, if one or more of the components are flexible, then the simulation will not be accurate because of the violation of the rigid body assumption. Mode shapes are used to represent the dynamic behavior of an elastic structure. A modal synthesis method which uses a combination of normal modes, constraint modes, and attachment modes, was used to represent effectively the elastic deformation of a flexible multibody. Since the combination of these modes should be different for each type of connecting part, the modal synthesis method was studied for the various types of interconnecting joints. In addition, the analysis procedure for the flexible body was explained. A satellite system with flexible solar panels was chosen as an example to show the effectiveness of the proposed method.

The effect of compression load and rock bridge geometry on the shear mechanism of weak plane

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.431-446
    • /
    • 2017
  • Rock bridges in rock masses would increase the bearing capacity of Non-persistent discontinuities. In this paper the effect of ratio of rock bridge surface to joint surface, rock bridge shape and normal load on failure behaviour of intermittent rock joint were investigated. A total of 42 various models with dimensions of $15cm{\times}15cm{\times}15cm$ of plaster specimens were fabricated simulating the open joints possessing rock bridge. The introduced rock bridges have various continuities in shear surface. The area of the rock bridge was $45cm^2$ and $90cm^2$ out of the total fixed area of $225cm^2$ respectively. The fabricated specimens were subjected to shear tests under normal loads of 0.5 MPa, 2 MPa and 4 MPa in order to investigate the shear mechanism of rock bridge. The results indicated that the failure pattern and the failure mechanism were affected by two parameters; i.e., the ratio of joint surface to rock bridge surface and normal load. So that increasing in joint area in front of the rock bridge changes the shear failure mode to tensile failure mode. Also the tensile failure change to shear failure by increasing the normal load.

Dynamic Analysis of Machine Tool Structure by Mode Synthesis Method (모드합성법을 이용한 공작기계구조물의 동적 거동 해석)

  • 이영우;성활경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.261-265
    • /
    • 2002
  • In the machining tool avoid vibration problem have an effect on high precision as well as statical and thermal characteristics. Therefore overcome this problem is essential to advance of machine tool and machining skill. Even though vibration arises owing to a variety of causes, in this paper vibration analysis of column as a major part of machine tool structures is presented. At this procedure vibration analysis applied to mode synthesis method using a attachment mode .

  • PDF

A Study on a Wideband Helical Antenna for Mobile Handset using Parasitic Element Effect (기생소자 효과를 이용한 이동 단말기용 광대역 헬리컬 안테나 연구)

  • 성원모;양묘근;전용승;이치우;박진희;최학근
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.9
    • /
    • pp.899-903
    • /
    • 2003
  • In this paper, a wide band helical antenna for mobile handset using parasitic element effect has been investigated. To obtain the effect of parasitic element, we utilized the cylindrical conductor which is not feed. As thickness of cylindrical conductor is increasing, second and third resonance frequency become abruptly variable. In case of that 4.5mm diameter parasitic element cylindrical conductor is inserted, normal mode helical antenna obtained bandwidth of around 900 MHz on the limit of R. L., - 5 dB.

A study on the Nonlinear Normal Mode Vibration Using Adelphic Integral

  • Huinam Rhee;Kim, Jeong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1922-1927
    • /
    • 2003
  • Nonlinear normal mode (NNM) vibration, in a nonlinear dual mass Hamiltonian system, which has 6$\^$th/ order homogeneous polynomial as a nonlinear term, is studied in this paper. The existence, bifurcation, and the orbital stability of periodic motions are to be studied in the phase space. In order to find the analytic expression of the invariant curves in the Poincare Map, which is a mapping of a phase trajectory onto 2 dimensional surface in 4 dimensional phase space, Whittaker's Adelphic Integral, instead of the direct integration of the equations of motion or the Birkhoff-Gustavson (B-G) canonical transformation, is derived for small value of energy. It is revealed that the integral of motion by Adelphic Integral is essentially consistent with the one obtained from the B-G transformation method. The resulting expression of the invariant curves can be used for analyzing the behavior of NNM vibration in the Poincare Map.