• Title/Summary/Keyword: normal curing

Search Result 178, Processing Time 0.027 seconds

Experimental comparability between steam and normal curing methods on tensile behavior of RPC

  • Guo, Min;Gao, Ri
    • Advances in concrete construction
    • /
    • v.11 no.4
    • /
    • pp.347-356
    • /
    • 2021
  • To address the limitation of the commonly used steam curing of reactive powder concrete (SC-RPC) in engineering, a preparation technology of normal curing reactive powder concrete (NC-RPC) is proposed. In this study, an experimental comparative research on the mechanical properties of NC-RPC and SC-RPC under uniaxial tension is conducted. Under the premise of giving full play to the ultra-high performance of RPC, the paper tries to explore whether normal curing can replace steam curing. The results show that various mechanical indexes of NC-RPC (e.g., tensile strength, ultimate tensile strain, elastic modulus and deformation performance) could basically reach the mechanical index values in steam curing at 28d age, some performance is even better at a longer age. So it affirms the feasibility of normal curing. In this paper, the influence of normal curing age on the tensile properties of RPC is discussed, and the relationship between each index and age is introduced in detail. Based on the experimental data, the tensile mechanism of RPC is analyzed theoretically, and two kinds of tensile constitutive models for RPC are proposed, one is curvilinear model, and another one is polygonal line model. The validity of the two models is further verified by the test results of others.

A Study on Curing Methods for Concrete Pavement on Early Strength Development in Cool Weather Condition (저온 환경에서 콘크리트 포장의 강도발현 촉진을 위한 양생방법 연구)

  • Ryu, SungWoo;Kim, JinHwan;Hong, SeungHo;Park, JeJin
    • International Journal of Highway Engineering
    • /
    • v.19 no.3
    • /
    • pp.11-18
    • /
    • 2017
  • PURPOSES : This study investigates the effect on concrete pavement accordance with the curing methods in cool weather and supports the best method in the field. METHODS : Two field tests evaluated the curing methods of concrete pavement in cool weather. Firstly, five curing methods were tested, including normal curing compound, black curing compound, bubble sheet, curing mat, and curing mat covered with vinyl. Concrete maturity was compared from temperature data. Secondly, normal curing compound and curing mat with vinyl, which showed the best performance, were compared in terms of maturity and join condition index. RESULTS:From the field tests, it is an evident that curing mat with vinyl accelerated the concrete strength. Therefore, it is possible to conduct saw-cut works in cool weather, which minimizes damage on concrete at joint. CONCLUSIONS : For concrete pavement in cool weather, using curing mat with vinyl as the curing method could overcome the strength delay. Therefore, strength and durability problems on concrete at joint due to cool weather would be fewer in the future.

A Study on the Effect of Curing Temperature on the Unconfined Compressive Strength of Soil Cement Mixtures. (양생온도가 Soil Cement의 압축강도에 미치는 영향에 관한 연구)

  • 김재영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.4
    • /
    • pp.3931-3942
    • /
    • 1975
  • This study was conducted to investigate the strength of soil cement for varied curing temperatures (0,10,20,30,40,50,60$^{\circ}C$) and cement content (3,6,9,12%) in four cement-stabilized soils (KY: sand, MH: sand, SS: sandy loam, JJ:loam). The experimental results obtained from unconfined compressive strength tests were as follows: 1. According to increase of curing temperature as 30,40,50, and 60$^{\circ}C$, the unconfiened compressive strength of soil cement increased, the rate of increase in the early curing period was large, and around 120 hours was suifficient curing time to complete hardening. 2. The strength at 10$^{\circ}C$ decreased to the rate of 30 to 40 percent than that of 20$^{\circ}C$ while the strength at 0$^{\circ}C$ was very small, strength of soil cement increased in cold weather unless that the temperature was below 0$^{\circ}C$ 3. The average maximum temperature, about 30$^{\circ}C$ during July and August in Korea may be recommended for a optimum construction period to increase the strength of soil cement. 4. Accelerated curing time that strength was equivalent to 28-Day norma1 curing decreased in accordance with the increase of curing temperature, and also accelerated curing decreased the effect of cement content. Accelerated curing that strength was equivalent to 28-day normal curing for soil cement of cement content 9% and temperature 60$^{\circ}C$ was 45 hours; KY, 50 hours: MH, 40 hours; SS, 34 hours; JJ. 5. According to the increase of the percent passing of No. 200 sieve, accelerated curing times became shorter to become the required stength. 6. Relation between accelerated curing times and normal curing days was showeda linear of which slope decreased in accordance with the increase of curing temperature, it may be expressed as follows: (1). 30$^{\circ}C$ t=3.6d+6(r=0.97) (2). 40$^{\circ}C$ t=3.2d-5.1(r=0.95) (3). 50$^{\circ}C$ t=2.1d-4.0(r=0.93) (4). 60$^{\circ}C$ t=1.4d+4.0(r=0.90) in which t=accelerate curing time. d=normal curing day. 7. Accelerated curing time that the strength was equivalent to 35kg/$\textrm{cm}^2$ which was the strength of cement brick was 96 hours at temperature 30$^{\circ}C$ to SS 9%, and 120 hours at temperature 50$^{\circ}C$ to JJ 9%, Consequently, a economic soil cement brick may be made in future.

  • PDF

A Study on Construction Quality Inspection of Field use Concrete (현장 타설용 콘크리트의 시공품질 검토를 위한 연구)

  • 김민석;강병훈;강태경;박선길;이종균;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1057-1062
    • /
    • 2000
  • The purpose of this study is to practice the method which can estimate 28-days strength of concrete in advance. This method is made for reliant quality control. Based on existing experiment, concrete that flyash added and normal concrete are placed into wall structure, and it is examined the difference between experiment use concrete and field use concrete. The result of this study are as follows : 1) Core test specimen have 10% lower strength to standard curing specimen. 2) At 28-days accelerated strength by microwave, average 35% in normal concrete, average 23% in flyash added concrete. 3) At coefficient of determination between compressive strength and accelerated strength, 0.84 in normal concrete core, 0.86 in standard curing normal concrete, 0.86 in flyash added concrete, 0.90 in standard curing flyash added concrete.

The Investigation of Rheological Properties Development for Polymer Matrix Including Foaming Agent

  • Lee, Seung Hak;Kim, Dong Gun;Lim, Sung Wook;Park, Eun Young;Park, Tae Sun;Hyun, Kyu
    • Elastomers and Composites
    • /
    • v.51 no.1
    • /
    • pp.24-30
    • /
    • 2016
  • Sole in the footwear usually modified with foaming agent on the polymer resin to improve the lightweightness and crush-cushion effect. In this study, we investigated rheological properties for polymer resin filled with the different type and concentration of foaming agent, capsule type foaming agent and organo-chemical foaming agent, under the time sweep test. Curing times of each polymer resin with different kind of foaming agent are delayed than reference material (epoxy resin with curing agent). In case of adding capsule type foaming agent, however, there is appropriate concentration to reduce the curing time, relatively. When foaming agent is activated, foaming force inflates the sample in contrast to condensation force of curing and then axial normal force develop to the (+) direction. Interestingly, by increase concentration of foaming agent, there is a specific point to break down the axial normal force development. The reason for this phenomenon is that coalescence of foams induce the blocking of axial normal force development.

Friction behavior of controlled low strength material-soil interface

  • Han, WooJin;Kim, Sang Yeob;Lee, Jong-Sub;Byun, Yong-Hoon
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.407-415
    • /
    • 2019
  • A controlled low strength material (CLSM) is a highly flowable cementitious material used for trench backfilling. However, when applying vertical loads to backfilled trenches, shear failure or differential settlement may occur at the interface between the CLSM and natural soil. Hence, this study aims to evaluate the characteristics of the interface friction between the CLSM and soils based on curing time, gradation, and normal stress. The CLSM is composed of fly ash, calcium sulfoaluminate cement, sand, silt, water, and an accelerator. To investigate the engineering properties of the CLSM, flow and unconfined compressive strength tests are carried out. Poorly graded and well-graded sands are selected as the in-situ soil adjacent to the CLSM. The direct shear tests of the CLSM and soils are carried out under three normal stresses for four different curing times. The test results show that the shear strengths obtained within 1 day are higher than those obtained after 1 day. As the curing time increases, the maximum dilation of the poorly graded sand-CLSM specimens under lower normal stresses also generally increases. The maximum contraction increases with increasing normal stress, but it decreases with increasing curing time. The shear strengths of the well-graded sand-CLSM interface are greater than those of the poorly graded sand-CLSM interface. Moreover, the friction angle for the CLSM-soil interface decreases with increasing curing time, and the friction angles of the well-graded sand-CLSM interface are greater than those of the poorly graded sand-CLSM interface. The results suggest that the CLSM may be effectively used for trench backfilling owing to a better understanding of the interface shear strength and behavior between the CLSM and soils.

A Study on Curing of Commercially Available Chines Urushiol (옻칠의 경화에 관한 연구)

  • Kim, Young-Baek;Park, Deok-Soo
    • The Journal of Natural Sciences
    • /
    • v.8 no.2
    • /
    • pp.21-26
    • /
    • 1996
  • Commercially available Chines oriental lacquer was treated to get two fractions, hexane soluble fraction and hexane insoluble fraction. Hexane soluble fraction was subjected to thermal curing process. Films obtained from the lacquer under normal conditions and obtained from thermal curing were compared. The compounds in hexane soluble fraction were copolymerized with 1,6-diisocyanohexane, and toluendiisocyanate(TDI). Films obtained by thermal curing were highly brittle and hydrophobic while the films obtained under normal conditions were hydrophilic. Curing reaction did not occur when oxygen was not available.Some of the major component in the lacquer was isolated by HPLC and UV spectrum of each compound was recorded.

  • PDF

Influence of extreme curing conditions on compressive strength and pulse velocity of lightweight pumice concrete

  • Anwar Hossain, Khandaker M.
    • Computers and Concrete
    • /
    • v.6 no.6
    • /
    • pp.437-450
    • /
    • 2009
  • The effect of six different curing conditions on compressive strength and ultrasonic pulse velocity (UPV) of volcanic pumice concrete (VPC) and normal concrete (NC) has been studied. The curing conditions include water, air, low temperature ($4^{\circ}C$) and different elevated temperatures of up to $110^{\circ}C$. The curing age varies from 3 days to 91 days. The development in the pulse velocity and the compressive strength is found to be higher in full water curing than the other curing conditions. The reduction of pulse velocity and compressive strength is more in high temperature curing conditions and also more in VPC compared to NC. Curing conditions affect the relationship between pulse velocity and compressive strength of both VPC and NC.

Prediction of compressive strength of concrete based on accelerated strength

  • Shelke, N.L.;Gadve, Sangeeta
    • Structural Engineering and Mechanics
    • /
    • v.58 no.6
    • /
    • pp.989-999
    • /
    • 2016
  • Moist curing of concrete is a time consuming procedure. It takes minimum 28 days of curing to obtain the characteristic strength of concrete. However, under certain situations such as shortage of time, weather conditions, on the spot changes in project and speedy construction, waiting for entire curing period becomes unaffordable. This situation demands early strength of concrete which can be met using accelerated curing methods. It becomes necessary to obtain early strength of concrete rather than waiting for entire period of curing which proves to be uneconomical. In India, accelerated curing methods are used to arrive upon the actual strength by resorting to the equations suggested by Bureau of Indian Standards' (BIS). However, it has been observed that the results obtained using above equations are exaggerated. In the present experimental investigations, the results of the accelerated compressive strength of the concrete are used to develop the regression models for predicting the short term and long term compressive strength of concrete. The proposed regression models show better agreement with the actual compressive strength than the existing model suggested by BIS specification.

Effect of Curing Method on Physical Properties of a New Flue-cured Tobacco Variety KF114 (황색종 신품종 KFl14의 건조방법 조절이 잎담배 물리성에 미치는 영향)

  • 이철환;조수헌;이병철;진정의
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.22 no.1
    • /
    • pp.13-18
    • /
    • 2000
  • All steps of the curing process are automatically controlled by preseted program according to stalk positions in flue-cured tobacco. The bulk curing experiment was carried out to evaluate the effect of the basic and modified curing program in curing time schedule of two bulk models in physical properties of cured leaves in a new flue-cured tobacco variety KF 114(Wicotiano tabacum L.). The curing process of KF 114 was prolonged in yellowing and quicker in browning stage than those of NC 82. There was no significant difference in physical properties and chromatic characteristics of the cured leaves between basic and modified program at two bulk models. The ratio of normal leaf color tended to increase and the greenish leaf decreased in the modified curing program of two models, but no difference in the brownish leaf ratio was olserved between two programs.

  • PDF