• Title/Summary/Keyword: nonwoven fabric

Search Result 101, Processing Time 0.029 seconds

Effect of Manufacturing Conditions on the Properties of Oil-absorbable Melt Blown Nonwoven (멜트블로운 부직포 제조공정이 유흡착포의 특성에 미치는 영향)

  • Shin, Hyun-Sae;Jin, Lu;Yoo, Joo-Hwan
    • Textile Coloration and Finishing
    • /
    • v.21 no.6
    • /
    • pp.22-28
    • /
    • 2009
  • Oil-absorbable nonwovens were produced by melt-blown processing of polypropylene chips. The melt-blown processing conditions, such as air pressure, and gear pump speed, DCD. In this study, these three factors were chosen to produce samples. Experimental array and variance analysis of the design of experiment were used to increase the field repeatability and universality. The effect of the factors on oil absorption properties of melt-blown nonwoven fabric such as oil absorbency were evaluated. As a result, the fiber diameter decreased as gearpump speed decreased or air pressure increased. The oil absorbency increased as air pressure increased or gearpump speed decreased and with the DCD increasing the oil absorbency significantly increased.

A Study on Sound Absorption of Polyester Dry-laid Nonwovens (폴리에스터 건식부직포의 흡음성 연구)

  • Bae, Younghwan;Lee, Myungsung;Kim, Jung Yeon;Choi, Yeong Og;Yeo, Sang Young
    • Textile Coloration and Finishing
    • /
    • v.34 no.1
    • /
    • pp.38-45
    • /
    • 2022
  • Sound absorbing materials are being developed in various materials and shapes and they are being applied in many fields such as construction, transportation, civil engineering, and sound. Among many sound-absorbing materials, polyester fiber has no environmental problems and harmfulness, and is a material with good sound absorption properties while being inexpensive. So it is manufactured as a nonwoven sound-absorbing material and used in various fields. In this study, polyester dry-laid nonwoven with different basis weight were manufactured using three types of polyester staple fibers: regular solid, single-hole hollow, and low linear density. We focused on the effects of the properties of the fibers, which constitute nonwovens, on the sound absorption properties, and we considered the basis weight. As the basis weight of the nonwoven fabric increased, the pore size became smaller and the air permeability was lowered, but the sound absorption coefficient was higher. However, the single-hole hollow polyester fiber did not contribute to the increase of the sound absorption coefficient of the nonwoven. It was established that, lower fiber fineness caused the sound absorption coefficient of the nonwoven to be increased. It was also found that the increase in the sound absorption coefficient due to the application of low fineness appeared from a certain basis weight or more.

An Analysis of Effective Variables on Clothing Wear Comfort Using Linear Structural Equation (선형구조방정식을 이용한 의복착용쾌적감 영향요인 분석)

  • 이은주;조정숙;이정주;최종명;조길수
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1997.11a
    • /
    • pp.47-52
    • /
    • 1997
  • This study was carried out to investigate effects of fabric properties and the changes of microclimates on comfort sensations and to identify effective varuables on clothing wear comfort sensations. A wied range of nontreated and functionally treated woven fabrics, knits, and nonwoven fabrics and test garments made of them were used as specimens. Linear structural equation was used to analyze causal relation among the variables on a path diagram. The results were as follows: 1. Almost of causal relations among variables were significant excdpt the effects of fabric properties including air permeability and water-vapor permebility on the changes of microclimate temperature. 2. Fabric properties were most effective variables on clothing wear comfort sensations including thermal sensation, subjeceive wettedness, and overall comfort and therefore comfort sensations and fabric properties were identified for improving clothing comfort.

  • PDF

The Analysis on the Work Environment and Working Clothes Wearing Conditions of Shipyard Painters (조선소 도장작업자의 작업환경 및 작업복 착의실태 분석)

  • Bae, Hyun-Sook;Park, Hye-Won;Park, Gin-Ah
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.3
    • /
    • pp.518-528
    • /
    • 2010
  • This study analyzes the work environment and the work clothes wearing conditions of shipyard painters. In addition to this, three types of experimental painting work clothes were evaluated by painters in terms of the material performance and wearing functions. The findings on the harmful painting work environmental factors were organic solvents, noise, heavy dust, high temperatures, and noxious fumes. The body parts damaged during painting operations were the skin, arms, whole body, and face. In general, the satisfaction with the wearing performance of work clothes for painting was low especially in regards to sweat absorbency, sweat permeability, body protection, covering, and the work motion suitability. The satisfaction with the wearing sense of painting working clothes (regardless of the type of material) was high in the order of movement comfort> sensual comfort> physiological comfort. The satisfaction in overall comfort according to the types of material was high in the order of nylon> SMS nonwoven fabric> SF nonwoven fabric.

Effect of Structure on the Sound Absorption and Sound Transmission Loss of Composite Sheet (복합시트의 구조가 흡·차음성에 미치는 영향)

  • Lee, Byung-Chan;Kim, Sung-Ryong
    • Composites Research
    • /
    • v.25 no.5
    • /
    • pp.154-158
    • /
    • 2012
  • The effect of structure on the sound absorption and sound transmission loss of composite sheet was investigated. A sheet of polypropylene was bonded by hot press with nonwoven fabric sheets of polyethylene terephthalate on the top side and the back side. Absorption coefficient of composite sheet using nonwoven fabric with surface density of $0.64kg/m^2$ was 0.1-0.2. It is 100-400% improvement compare to that of polypropylene sheet. The transmission loss of composite sheet was increased with surface density of polypropylene board and introduction of hemisphere hole on the surface of sheet. Two types of composite sheet were made using flat sheet and sine wave shaped sheet and the effect of sheet structure on the transmission loss was investigated.

Effect of Operating Parameters on Electrochemical Degradation of Rhodamine B by Three-dimensional Electrode (3차원 전극을 사용한 Rhodamine B의 전기분해에 미치는 운전인자의 영향)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.4
    • /
    • pp.295-303
    • /
    • 2009
  • A simulated wastewater containing the dye Rhodamine B (RhB) was electrolytically treated using a three-dimensional electrode reactor equipped with granular activated carbon (GAC) as particle electrode. The effect of type of packing material (GAC, ACF, Nonwoven fabric fiber coated with activated carbon), amounts of GAC packing (25-100 g), current (0.5-3 A) and electrolyte concentration (0.5-3 g/l) was evaluated. Experimental results showed that performance for RhB decolorization of the 3 three-dimensional electrodes lie in: GAC > Nonwoven fabric fiber > ACF. When considered RhB decolorization, oxidants concentration and electric power, optimum GAC dosage was 50 g. Generated concentration of 3 oxidants ($ClO_2$, free Cl, $H_2O_2$) was increased with increase of applied current, however optimum current for RhB degradation was 2.5 A. The oxidants concentration was increased with increase of NaCl concentration and optimum NaCl dosage for RhB degradation was 1.5 g/l.

Reduction Cleaning and Thermomigration Effects on Micro Polyester SUEDE (극세 폴리에스테르 스웨드의 환원세정과 열이행의 영향)

  • Choi, Kyung-Yeon;Han, Sam-Sook;Lee, Mun-Cheul
    • Textile Coloration and Finishing
    • /
    • v.21 no.6
    • /
    • pp.12-21
    • /
    • 2009
  • The dyeing property of direct-spinning type and seaisland type 0.2D micro polyester nonwoven fabrics was characterized by three disperse dyes (Dorosperse Red KFFB, Blue KGBR, Yellow KRL) at $120^{\circ}C$ and $130^{\circ}C$. Before and after reduction cleaning, dyeing fastness was evaluated and the thermomigaration after heat setting at $180^{\circ}C$ for 60 min were also evaluated. Direct-spinning type fabric showed better dyeing property, wash fastness, and light fastness, but worse rub fastness than seaisland type fabric. The dyeing property and fastness of direct-spinning type fabric increased at higher dyeing temperature, whereas seaisland type fabric exhibited lower dyeing fastness and the increase of thermomigration at higher dyeing temperature. Non-fixed dye in fiber surface was removed by reduction cleaning process, then dyeing fastness was improved and thermomigration decreased. The higher dye uptake of direct-spinning type non-woven fabric caused the increase of dye molecule migration from fiber internal to fiber surface, so this fabric showed larger thermomigration than seaisland type non-woven fabric.

Structural analysis and design proposal of fine dust mask with nanofiber filter fabricated using electrospinning (전기방사 나노섬유 필터를 활용한 미세먼지 마스크의 구조 분석 및 디자인 제안)

  • Han, Sang Yun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.4
    • /
    • pp.191-195
    • /
    • 2017
  • The microstructures of nonwoven fabric with and without nanofibers used as a filter for air purification type mask were investigated using scanning electron microscope. Moreover, we proposed a new mask design which is effective in the improvement of the fine dust blocking property. When comparing to nonwoven fabrics of which an average diameter was $25{\mu}m$, the nanofibers formed by the electrospinning process had a tight mesh structure arranged irregularly with a relatively large specific surface area, which could be associated with their much smaller diameter ranging from 25 to 120 nm. Such a prominent structural feature at nanofibers led to mechanical adsorption of fine particles, resulting in enhancement of filtering behavior maintaining high permeability. In addition to the excellent performance of the mask filter, wearing the mask properly is expected to maximize the blocking property of fine dust. To meet such a requirement, a new mask design that can be closely attached to the face in order to effectively block fine dust entering the gap between the face and the mask.

Wear Performance of Pesticide Protective Clothing in Vinyl Plastic Hothouse made with Water-Oil Repellent and Dual Functional Finished Nonwoven Fabrics (비닐하우스 내에서의 발수발유가공 부직포와 복합가공 부직포로 만든 농약 방호복의 착용성능)

  • Choi, Jong-Myoung;Cho, Jeong-Sook;Cho, Gil-Soo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.2
    • /
    • pp.350-361
    • /
    • 1996
  • The objectives of this study mere 1) to investigate whether the different nonwoven fabric types influenced on the objective and subjective wear performances of the experimental pesticide protective pants, 2) to detect whether the different finishes treated to the nonwoven fabrics influenced on the objective and subjective wear performances of the experimental pants, and 3) to detect the relationships between objective wear performances and subjective wear sensation. Three types of nonwoven fabrics (T (Tyvek$\textregistered$), 5 (Sontara$\textregistered$) and K (Kimlon$\textregistered$)) were used as test specimens. By pad-dry.cure method, each of the specimen was treated with fluorocarbon compound for water-oil repellent finish (Tw, Sw, Kw). And each of specimen was treated with organic silicon quarternary ammonium salts and then treated with fluorocabon compound for dual functional finish (76, 50, Kd). Using the three water-oil repellent finished fabrics and the three dual functional finished fabrics, six experimental protective pants (Cl (Tw), C2 (Sw), C3 (Kw), C4 (76), C5 (56), C6 (Kd)) were made according to the same pattern suggested by the Rual Guidance Office. The wear trials of experimental pesticide protective pants were performed in a conditioned vinyl plastic hothouse ($30\pm1^{\circ}C$, $70\pm5%$R.H., 0.25m/sec air velocity). The measurements of skin temperature, microclimate temperature and humidity on the subjects were obtained by the themohygromenter. The subjective wear sensations were measured using previously developed thermal, humidity and overall comfort scales. The results obtained from this study were as follows: 1) There were siginificant differences among nonwoven fabric types on the objective and subjective wear performances, therefore, the skin temperature, microclimate temperature and humidity of subjects who wore the experimental pants made with Sontara were siginificantly lower than those who wore the others. And, the experimental pants made with Sontara were assessed as more comfortable than the others in terms of the subjective thermal, humidity and overall wear sensations. 2) There were no significant differences between two finish types on the objective and subjective wear Performances. 3) The microclimate humidity on the thigh was highly correlated with the overall subjective comfort sensations and the next highly correlated one was the mean skin temperature. That is, the higher the microclimate humidity and the mean skin temperature, the higher the overall subjective comfort sensation ratings which mean the overall subjective sensation was very uncomfortable.

  • PDF