• 제목/요약/키워드: nonthermal atmospheric plasma

검색결과 25건 처리시간 0.041초

Analysis of Plasma Effects on Seed Germination and Plant Growth

  • Kim, Taesoo;Park, Daehun;Park, Gyungsoon;Choi, Eun Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.253.1-253.1
    • /
    • 2014
  • Plasma technology has been widely used for decontamination, differentiation, and disease treatment. Recently, studies show that plasma has effects on increasing seed germination and plant growth. In spite of increasing number of studies about plasma effects, the interaction between plasma and plants has been rarely informed. In this study, we have analyzed the effects of nonthermal atmospheric pressure plasma on seed germination and growth of coriander (Coriandum sativum), a medicinal plant. We used to Ar, air, and N2 plasma on seed as feeding gases. Plasma was discharged at 0.62 kV, 200 mA, 9.2 W. Seed germination was increased over time when treated with N2 based DBD plasma for exposure times of 30 seconds and 1 minute, everyday. After 7 days, about 80~100% of seeds were germinated in the treatment with N2 based DBD plasma, compared to control (about 40%, only gas treated seeds). In order to elucidate the mechanism of increased germination, we have analyzed characteristics of changes in plant hormones and seed surface structure by SEM.

  • PDF

Enhancement of Nitric Oxide with nonthermal plasma jet and its effect on Escherichia coli inactivation

  • Shaw, Priyanka;Kumar, Naresh;Attri, Pankaj;Kwak, Hyong Sin;Choi, Eun Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.159-159
    • /
    • 2015
  • A new approach for antimicrobial is based on the overproduction of reactive nitrogen species (RNS), especially; nitric oxide (NO) and peroxinitrite (ONOO-) are important factors to deactivate the bacteria. Recently, non-thermal atmospheric pressure plasma jet (APPJ) has been frequently used in the field of microbial sterilization through the generation of different kinds of RNS/ROS species. However, in previous study we showed APPJ has combine effects ROS/RNS on bacterial sterilization. It is not still clear whether this bacterial killing effect has been done through ROS or RNS. We need to further investigate separate effect of ROS and RNS on bacterial sterilization. Hence, in this work, we have enhanced NO production, especially; by applying a 1% of HNO3 vapour to the N2 based APPJ. In comparison with nitrogen plasma with inclusion of water vapour plasma, it has been shown that nitrogen plasma with inclusion of 1% of HNO3 vapour has higher efficiency in killing the E. coli through the high production of NO. We also investigate the enhancement of NO species both in atmosphere by emission spectrum and inside the solution by ultraviolet absorption spectroscopy. Moreover, qPCR analysis of oxidative stress mRNA shows higher gene expression. It is noted that 1% of HNO3 vapour plasma generates high amount of NO for killing bacteria.

  • PDF

Enhancement of Nitric Oxide with nonthermal plasma jet and its effect on Escherichia coli inactivation and various type of cancer cell

  • Shaw, Priyanka;Kumar, Naresh;Attri, Pankaj;Choi, Eun Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.230.2-230.2
    • /
    • 2016
  • A new approach for antimicrobial is based on the overproduction of reactive nitrogen species (RNS), especially; nitric oxide (NO) and peroxinitrite ($ONOO^-$-) are important factors to deactivate the bacteria. Recently, non-thermal atmospheric pressure plasma jet (APPJ) has been frequently used in the field of microbial sterilization through the generation of different kinds of RNS/ROS species. However, in previous study we showed APPJ has combine effects ROS/RNS on bacterial sterilization. It is not still clear whether this bacterial killing effect has been done through ROS or RNS. We need to further investigate separate effect of ROS and RNS on bacterial sterilization. Hence, in this work, we have enhanced NO production, especially; by applying a 1% of HNO3 vapour to the N2 based APPJ. In comparison with nitrogen plasma with inclusion of water vapour plasma, it has been shown that nitrogen plasma with inclusion of 1% of HNO3 vapour has higher efficiency in killing the E. coli and different type of cancer cell through the high production of NO. We also investigate the enhancement of NO species both in atmosphere by emission spectrum and inside the solution by ultraviolet absorption spectroscopy. Moreover, qPCR analysis of oxidative stress mRNA shows higher gene expression. It is noted that 1% of HNO3 vapour plasma generates high amount of NO for killing bacteria and cancer cell killing.

  • PDF

코로나 방전 플라즈마를 이용한 화산암재 분말 살균 (Sterilization of Scoria Powder by Corona Discharge Plasma)

  • 조진오;이호원;목영선
    • 공업화학
    • /
    • 제25권4호
    • /
    • pp.386-391
    • /
    • 2014
  • 본 연구에서는 상압 저온 코로나 방전 플라즈마를 화산암재(스코리아) 분말의 살균에 적용하였다. 스코리아 분말에 Escherichia coli (E. coli) 배양액을 살포하여 균일하게 혼합한 후, 코로나 방전 플라즈마 특성 인자인 방전전력, 방전시간, 주입기체, 전극간격 등의 조건을 변화시키며 E. coli 살균효율을 조사하였다. 실험 결과 상압 저온 코로나 방전 플라즈마는 분말상의 스코리아 살균에 아주 효과적인 것으로 나타났으며, 방전전력 15 W에서 5 min 동안 살균한 결과 E. coli가 99.9% 이상 사멸하였다. 방전전력, 방전시간, 인가전압이 증가할수록 사멸율이 향상되었다. 반응기에 주입되는 기체의 종류에 따른 살균력 실험 결과, 산소 > 모사공기(산소 20%) > 질소 순으로 나타났다. 코로나 방전 플라즈마에 의한 E. coli 살균은 자외선과 활성산화종(산소라디칼, OH라디칼, 오존 등)에 의한 세포막 침식 및 에칭, 그리고 플라즈마 방전 스트리머에 의한 대장균 세포막 파괴로 설명할 수 있다.

Radio and Hard X-ray Study of the 2011 August 09 Flare

  • 황보정은;봉수찬;이정우;;박성홍;박영득
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.65.1-65.1
    • /
    • 2013
  • The 2011 August 09 Flare is one of the largest X-ray flares of Sunspot Cycle 24 to attract a lot of attention for its various activities detected in coronal images. In this study we concern ourselves mostly on information of high energy electrons produced during this flare provided by hard X ray data from the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) and radio data from the Korean Solar Radio Burst Locator (KSRBL) and Ondrejov. EUV images obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory are used to provide the context of magnetic reconnection. In our results, (1) HXR spectra have a rich spectral morphology. Initially it could be fit by one thermal component (T~30MK) and one single power law nonthermal spectrum, but later a better fit could be made by introducing an additional thermal component (T~55 MK). (2) Time delays between the KSRBL burst and the RHESSI hard X-ray emission were found which are more obvious at low frequencies and insignificant at high frequencies. (3) The HXR source lies in the core of the quadrupolar active region. In our interpretation based on AIA 94 A images, the outer part of the active region erupted to be blown out, leaving the intense hard X-ray emission concentrated in the core. We relate the appearance of the second thermal component to the evolution of the AIA 171 and 94 A images. The time delays of microwave peaks to HXR peaks are interpreted as indicating presence of trapped electrons in larger closed magnetic loops. With these result we conclude that the hard X ray and microwaves are due to impulsive acceleration in the low and high heights and a sigmoidal reconnection scenario.

  • PDF