• Title/Summary/Keyword: nonstoichiometric

Search Result 93, Processing Time 0.024 seconds

Physical and Chemical Properties of (Sr,Mg)FeO3-y System Heat-treated in N2 (N2 분위기에서 열처리한 (Sr,Mg)FeO3-y계의 물리 및 화학적 성질)

  • Lee, Eun-Seok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.10
    • /
    • pp.642-647
    • /
    • 2015
  • The perovskite solid solutions of the $Sr_{1-x}Mg_xFe{^{3+}}_{1-{\tau}}Fe{^{4+}}_{\tau}O_{3-y}$ system (x=0.0, 0.1, 0.2, and 0.3) were synthesized in $N_2$ at $1,150^{\circ}C$. X-ray powder diffraction study assured that all the four samples had cubic symmetries(SM-0: $3.865{\AA}$, SM-1: $3.849{\AA}$, SM-2: $3.833{\AA}$, and SM-3: $3.820{\AA}$) and that the lattice volumes decreased steadily from $57.7{\AA}^3$ to $55.7{\AA}^3$ with x values. The nonstoichiometric chemical formulas were determined by Mohr salt analysis and with the increase of x values the amounts of $Fe^{4+}$ ion and oxygen were decreased simultaneously. Thermal analysis showed that SM-0 started to lose its oxygen at $450^{\circ}C$ and SM-1, Sm-2, and SM-3 began to lose their oxygen at around $350{\sim}400^{\circ}C$. SM-0 showed almost reversible weight change in the cooling process. All the samples exhibited semiconducting behaviors in the temperature range of $10{\sim}400^{\circ}C$. Conductivities of the 4 samples were decreased in the order of SM-0, SM-1, SM-2, and SM-3 at constant temperature. The activation energies of the conductions were in the range of 0.176 eV~0.244 eV.

Characteristics of (Sr1-xBax)NdFe3+1-τFe4+τO4-y System Heat-treated in Air

  • Lee, Eun-Seok;Hag, Jang-Chun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.1
    • /
    • pp.39-42
    • /
    • 2012
  • To study the physical and chemical properties, solid solutions of $(Sr_{1-x}Ba_x)NdFe{^{3+}}_{1-\tau}Fe{^{4+}}_{\tau}O_{4-y}$ system with x=0.0(SBN-0), 0.1(SBN-1), 0.2(SBN-2) and 0.3(SBN-3) were synthesized in air at 1,473 K and annealed in air at 1,073 K for 24 h. X-ray powder diffraction assured that the four samples had tetragonal symmetries (I4/mmm). Their lattice volumes increased gradually with x values. Nonstoichiometric chemical formulas were formulated using the data such as $\tau$(amount of $Fe^{4+}$ ion) and y(oxygen deficiency) values using Mohr salt analysis. It was found out that all the four samples had excessive oxygen (4-y>4.0). All the samples started to lose some of their oxygen at around 613K(TG/DTA thermal analysis). They exhibited semiconductivities in the temperature range of around 283-1173K. All the four specimens had sufficient tensile strength to endure the force of 19.6 N (2 kg of weights) and the conductivity values of the ECIAs which were painted on pieces of glass with the area of $150mm^2$ ($10mm{\times}15mm$) and it was in the order of ECIA-0${\rightarrow}$ECIA-1${\rightarrow}$ECIA-2${\rightarrow}$ECIA-3 at a constant temperature.

Removal potential of dissolved gas in gas hydrate desalination process by reverse osmosis (역삼투막을 이용한 가스하이드레이트 해수담수화 공정 내 용존 가스의 제거 가능성 평가)

  • Ryu, Hyunwook;Kim, Minseok;Lim, Jun-Heok;Kim, Joung Ha;Lee, Ju Dong;Kim, Suhan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.635-643
    • /
    • 2016
  • Gas hydrate (GH)-based desalination process have a potential as a novel unit desalination process. GHs are nonstoichiometric crystalline inclusion compounds formed at low temperature and a high pressure condition by water and a number of guest gas molecules. After formation, pure GHs are separated from the remaining concentrated seawater and they are dissociated into guest gas and pure water in a low temperature and a high pressure condition. The condition of GH formation is different depending on the type of guest gas. This is the reason why the guest gas is a key to success of GH desalination process. The salt rejection of GH based desalination process appeared 60.5-93%, post treatment process is needed to finally meet the product water quality. This study adopted reverse osmosis (RO) as a post treatment. However, the test about gas rejection by RO process have to be performed because the guest gas will be dissolved in a GH product (RO feed). In this research, removal potential of dissolved gas by RO process is performed using lab-scale RO system and GC/MS analysis. The relation between RO membrane characteristics and gas removal rate were analyzed based on the GC/MS measurement.

Studies of Nonstoichiometry and Physical Properties of the Perovskite $Sr_xHo_{1-x}FeO_{3-y}$ System

  • Ryu, Kwang-Sun;Lee, Sung-Joo;Yo, Chul-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.3
    • /
    • pp.256-260
    • /
    • 1994
  • Perovskite type oxides of the $Sr_xHo_{1-x}FeO_{3-y}$ system with compositions of x=0.00, 0.25, 0.50, 0.75, and 1.00 have been prepared at 1200$^{\circ}$C in air. X-ray powder diffraction assigns the compositions with x=0.00 and 0.25 to the orthorhombic crystal system and those with x=0.50, 0.75, and 1.00 to the cubic one. The unit cell volumes of solid solutions increase with x in the system. Nonstoichiometric chemical formulas were determined by Mohr salt titration. The mole ratio of $Fe^{4+}$ ions to total iron ions and the concentration of oxygen ion vacancies increase with x. Mossbauer spectra for the compositions of x= 0.00, 0.25, and 0.50 show six lines indicating the presence of $Fe^{3+}$ ions in the octahedral site. However, the presence of $Fe^{4+}$ ions may also be detected in the spectra for the compositions with x=0.25 and x=0.50. In the compositions with x=0.75 and 1.00, single line patterns show also the mixed valence state of $Fe^{3+}$ and $Fe^{4+}$ ions. The electrical conductivity in the temperature range of -100$^{\circ}$C to 100$^{\circ}$C under atmospheric air pressure increases sharply with x but the activation energy decreases with the mole ratio of $Fe^{4+}$ ion. The conduction mechanism of the perovskite system seems to be hopping of the conduction electrons between the mixed valence iron ions.

Study of Nonstoichiometry and Physical Properties of the Mixed Valency $Sr_xEu_{1-x}FeO_{3-y}$ ($0.00{\leq}x{\leq}$1.00) System (혼합원자가 $Sr_xEu_{1-x}FeO_{3-y}$ ($0.00{\leq}x{\leq}$1.00)계의 비화학량론과 물성 연구)

  • Ji Young Min;Kwon Sun Roh;Chul Hyun Yo
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.12
    • /
    • pp.873-879
    • /
    • 1994
  • A series of samples of solid solutions in the $Sr_xEu_{1-x}FeO_{3-y}(0.00{\leq}x{\leq}1.00)$ system has been prepared at $1200^{\circ}C$ under an atmospheric air pressure. The structures of solid solutions are studied by X-ray diffraction, thermal, Mohr salt, and Mossbauer spectroscopic analyses. Their physical properties are also discussed with the electrical conductivities. X-ray diffraction data for the compositions of x = 0.00, 0.25, and 1.00 are assigned to the orthorhombic and the compositions of x = 0.50 and 0.75 to the cubic systems. The lattice volume reduced to cubic cell increases with the x value. The mole ratio of $Fe^{4+}$ iometric chemical formulas of the system are formulated from the x, $\tau$, and y values. The mixed valency state of Fe ions, the oxygen coordination, and covalent bond character are discussed with the Mossbauer spectroscopic data. The activation enegy of the electrical conductivities depends on the $\tau$ value in the temperature range of -$100^{\circ}C$ to $600\circC$ under the air pressure. The Mossbauer spectrum and electrical conductivity of the solid solutions are discussed with nonstoichiometric chemical compositions.

  • PDF

Nonstoichiometry and Magnetic Properties of the $Eu_{1-x}Sr_xCoO_{3-y}$ System ($Eu_{1-x}Sr_xCoO_{3-y}$계의 비화학량론과 자기적 특성)

  • Ryu, Kwang Hyun;Min, Ji Young;Yo, Chul Hyun
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.7
    • /
    • pp.508-512
    • /
    • 1995
  • A series of samples in the $Eu_{1-x}Sr_xCoO_{3-y}$ system has been prepared by heating the proper amount of reactant mixture to 1150$^{\circ}C$ under an ambient atmosphere, and the solid solutions are identified by X-ray powder diffraction analysis. The crystal system of samples for the compositions of x=0.00 and 0.25 are found to be orthorhombic whose local symmetry is similiar to the distorted octahedra with orthoferrite type one, whereas those of x=0.50 and 0.75 to be the cubic system, and that of x=1.00 to the orthorhombic similiar to be the brownmillerite type. The amount of $Co^{4+}$ ion (${\tau}$ value) is maximized at the composition of x=0.50, and the oxygen vacancies increase with the x value. The nonstoichiometric chemical formula of each compound could be determined from the mole ratio of $Co^{4+}$ ion and oxygen vacancies. The $Co^{3+}$ ion located in octahedral site has spin transition from low spin to high spin states with increasing temperature. Therefore, the effective magnetic moment of each samples obtained from the magnetic measurement is increased with the increasing temperature. The $EuCoO_{3.00}$ has strong antiferromagnetic interaction between the neighboring $Co^{3+}$ ions through the intermediate oxygen ions. With the increasing ${\tau}$ value, the absolute {\theta}_p$ value is decreased by the ferromagnetic interaction of $Co^{3+}-O^2-Co^{4+}$ and thus the {\theta}_p$ has positive value at x=0.50.

  • PDF

Studies on Chemical Properties and Thermal Analysis of (Sr,M)FeO3-y System (M=Ca) ((Sr,M)FeO3-y계(M=Ca)의 화학적 성질과 열분석에 대한 연구)

  • Lee, Eun-Seok
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.954-959
    • /
    • 1997
  • The solid solutions of the $Sr_{1-X}M_XFeO_{3-y}$ (x=0.1, 0.2, 0.3, 0.4, 0.5, M=Ca) system having perovskite structures were prepared in air by heat treatment at 1473 K for 18hr. X-ray diffraction assigns cubic system for all the samples and shows that the lattice volume of each system decreases with increasing x value until x=0.3, but increases abruptly from x=0.4. The mole fractions of $Fe^{4+}$ ion($\tau$ value), the amounts of oxygen vacancy (y value) and finally nonstoichiometric chemical formulas for each composition were determined from Mohr salt analysis. TG/DTA thermal analysis (temperature range: 300~1173K) exhibits that 3-y values of the samples having x=0.1 and 0.2, decrease with temperature and increase almost reversibly with decreasing temperature. The samples of $x{\geq}0.3$, however, didn't show the reversible weight change and the 3-y values of them were nearly 2.5 in cooling process. Conductivities of each sample were varied within the semiconductivity range at relatively low temperature. And the conductivity at constant temperature decreases steadily with x value. The conduction mechanism of this ferrite system may be proposed as a hopping model of conducting electrons between the mixed valence states. At high temperature semiconductivity of each sample changed into metallic property.

  • PDF

Chemical Analysis and Thermoelectric Properties of the PbSnTe Semiconductors (화학조성에 따른 PbSnTe계 반도체의 열전특성조사)

  • Oh, Kyu-Whan;Oh, Seung-Mo
    • Applied Chemistry for Engineering
    • /
    • v.1 no.1
    • /
    • pp.83-90
    • /
    • 1990
  • The semiconducting $(Pb_1\;_xSn_x)_1$ $_yTe_y$, one of the low - temperature thermoelectric materials, has been prepared and its chemical composition and nonstoichiometry has been analyzed. The content of Pb in the specimens was determined by the complexometric back - titration method with EDTA and Pb(II) standard solutions. Te - content was analyzed with the redox titration method. The electrical conductivity and the thermoelectric power have also been measured by the DC 4 - probe and the heat-pulse technique, respectively. All of the specimens showed a nonstoichiometric behavior in their chemical compositions (Te excess), thus gave rise to a p - type semiconducting property, and the nonstoichoimetry became bigger as the Sn - content increased. The thermoelectric power vs. temperature results have been analyzed upon the basis of the Fermi level vs. temperature profiles in the saturation regime. The specimen of x=0.1 evolved a transition from p - to n - type property at about 670K, which has been explained by the fact that the mobility of electrons is bigger than that of holes in the temperature range of the intrinsic regime.

  • PDF

A Study of the Nonstoichiometry and Physical Properties of the Nd1-xBaxFeO3-y System ($Nd_{1-x}Ba_xFeO_{3-y}$계의 비화학량론과 물리적 성질에 관한 연구)

  • Chang, Soon Ho;Yu, Gwang Hyeon;Kim, Seong Jin;Choe, Seung Cheol;Jang, Sun Ho
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.8
    • /
    • pp.547-551
    • /
    • 1994
  • A series of samples in the $Nd_{1-x}Ba_xFeO_{3-y}$ system has been prepared by heating the reactants to$1200^{\circ}C$ under an ambient atmosphere, and the solid solutions were identified by X-ray power diffraction analysis. The crystal systems of samples with x = 0.00 and 0.25 were found to be orthorhombic whose local symmetry is similiar to the distorted octahedral with orthoferrite type one, whereas those with x = 0.50 and 0.75 to be the cubic system. Since Fe ions in the solid solutions are a mixed valence state between $Fe^{3+}\;and\;Fe^{4+}$ ions, the nonstoichiometric chemical formulas could be determined from the mole ratio of $Fe^{4+}$ ion and oxygen vacacies. According to the Mossbauer spectroscopic analysis, the presence of 5-coordinated $FeO_5$ was evidenced only in the barium compounds along with $FeO_6,\;and\;FeO_4$, but not in the strontium and calcium compounds. The samples with x = 0.25 and 0.50 show a spectrum of superparamagnetism, which might be due to the formation of a domain of the ferromagnetic interaction between the $Fe^{3+}\;and\;Fe^{4+}$ ions. The electrical conductivities of all samples are within semiconducting range. Since the $Fe^{4+}$ ion acts as an electron acceptor level during the electron transfer between the Fe through intermediate $O^{2-}$ ions, the activation energy of the compounds decreases with the increment of $Fe^{4+}$ content.

  • PDF

A Study on the Nonstoichiometry of the Iron Oxide System (산화철계의 비화학양론에 관한 연구)

  • Choi, Jae-Shi;Yo, Chul-Hyun;Choi, Sung-Nack
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.5
    • /
    • pp.337-345
    • /
    • 1973
  • The nonstoichiometry of the iron oxide system has been studied by analyzing the weight loss of a sample, measured by using a quartz microbalance, in a temperature range from $0^{\circ}C$ to $1200^{\circ}C$ under oxygen pressures from $10^{2}mmHg$ to $10^{-4}mmHg$. The Y values of the formula, $FeO_{1+\gamma}$, that have been obtained by this means for various conditions of temperature and pressure in this range are considered to be more accurate than values obtained by methods requiring thste quenching of the sample before measurements are made. The plots of log Y vs $log PO_2$ (or $log Y =_n log PO_2$) show linearity and n calculated from the slope of the plot is about 1/10 at $1000^{\circ}C$, indicating a difference between the nonstoichiometric and oxidation mechanisms. The condition for the formation of stoichiometric FeO was determined to be $1200^{\circ}C$ under $10^{-3}mmHg$ of $O_2$ and the composition of the oxide under standard conditions was $FeO_{1.11185}$. As in general more oxygen dissolves into the oxide system at lower temperatures and higher oxygen pressures, the deviation from stoichiometric FeO is greater under those conditions. A comparison of the change in conductivity of the sample indicates that full phase transition does not take place with conductivity transition.

  • PDF