• 제목/요약/키워드: nonnegative matrix factorization (NMF)

검색결과 31건 처리시간 0.03초

Nonnegative Matrix Factorization with Orthogonality Constraints

  • Yoo, Ji-Ho;Choi, Seung-Jin
    • Journal of Computing Science and Engineering
    • /
    • 제4권2호
    • /
    • pp.97-109
    • /
    • 2010
  • Nonnegative matrix factorization (NMF) is a popular method for multivariate analysis of nonnegative data, which is to decompose a data matrix into a product of two factor matrices with all entries restricted to be nonnegative. NMF was shown to be useful in a task of clustering (especially document clustering), but in some cases NMF produces the results inappropriate to the clustering problems. In this paper, we present an algorithm for orthogonal nonnegative matrix factorization, where an orthogonality constraint is imposed on the nonnegative decomposition of a term-document matrix. The result of orthogonal NMF can be clearly interpreted for the clustering problems, and also the performance of clustering is usually better than that of the NMF. We develop multiplicative updates directly from true gradient on Stiefel manifold, whereas existing algorithms consider additive orthogonality constraints. Experiments on several different document data sets show our orthogonal NMF algorithms perform better in a task of clustering, compared to the standard NMF and an existing orthogonal NMF.

Stiefel 다양체에서 곱셈의 업데이트를 이용한 비음수 행렬의 직교 분해 (Orthogonal Nonnegative Matrix Factorization: Multiplicative Updates on Stiefel Manifolds)

  • 유지호;최승진
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권5호
    • /
    • pp.347-352
    • /
    • 2009
  • 주어진 비음수 데이터를 두 개의 비음수 행렬의 곱의 형태로 표현하는 비음수 행렬 분해(Nonnegative Matrix Factorization)는 비음수 데이터의 다변량 분석에서 폭넓게 사용되고 있는 방법이다. 비음수 행렬 분해는 집단화(Clustering), 특히 문서의 집단화에서 유용하게 쓰일 수 있다. 본 논문에서는 주어진 문서들로부터 구성된 단어-문서 행렬을 두 개의 비음수 행렬의 곱으로 분해할 때, 그 중 하나의 행렬에 직교 제한을 주는 비음수 행렬의 직교 분해(Orthogonal Nonnegative Matrix Factorization) 방법을 다룬다. 현존하는 비음수 행렬의 직교 분해 방법은 직교 제한과 관련된 항을 더해주는 방식을 사용하지만, 여기서는 Stiefel 다양체 위에서의 실제 기울기를 직접 구하여 곱셈의 업데이트 알고리즘을 유도하였다. 다양한 문서 데이터에 대한 실험을 통해 새롭게 유도된 비음수 행렬의 직교 분해 방법이 기존의 비음수 행렬 분해나 기존의 비음수 행렬의 직교 분해보다 문서 집단화에서 우수한 성능을 나타냄을 보였다.

텐서의 비음수 Tucker 분해 (Nonnegative Tucker Decomposition)

  • 김용덕;최승진
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제14권3호
    • /
    • pp.296-300
    • /
    • 2008
  • 최근에 개발된 Nonnegative tensor factorization(NTF)는 비음수 행렬 분해(NMF)의 multiway(multilinear) 확장형이다. NTF는 CANDECOMP/PARAFAC 모델에 비음수 제약을 가한 모델이다. 본 논문에서는 Tucker 모델에 비음수 제약을 가한 nonnegative Tucker decomposition(NTD)라는 새로운 텐서 분해 모델을 제안한다. 제안된 NTD 모델을 least squares, I-divergence, $\alpha$-divergence를 이용한 여러 목적함수에 대하여 fitting하는 multiplicative update rule을 유도하였다.

시간 연속성을 갖는 비음수 행렬 분해를 이용한 음질 개선 (Speech Enhancement Using Nonnegative Matrix Factorization with Temporal Continuity)

  • 남승현
    • 한국음향학회지
    • /
    • 제34권3호
    • /
    • pp.240-246
    • /
    • 2015
  • 본 논문은 시간 연속성을 갖는 비음수 행렬 분해(Nonnegative Matrix Factorization, NMF)를 이용하여 잡음에 열화된 음성 신호의 음질을 개선하는 문제를 다룬다. 음성과 잡음 신호는 포아송 분포로 모델되며, NMF의 기본 벡터와 이득 벡터는 감마 분포로 모델된다. 이득 벡터의 시간 연속성은 음질 개선에 중요한 영향을 미치는 것으로 알려져 있다. 본 논문에서 시간의 연속성은 이득 벡터를 감마-마르코프 연쇄(Gamma-Markov chain, GMC) 사전 분포로 모델함으로써 이루어진다. 실험 결과는 제안된 알고리즘이 잡음 신호의 시간 연속성을 효과적으로 모델하는 것을 보여준다.

Vehicle Face Recognition Algorithm Based on Weighted Nonnegative Matrix Factorization with Double Regularization Terms

  • Shi, Chunhe;Wu, Chengdong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권5호
    • /
    • pp.2171-2185
    • /
    • 2020
  • In order to judge that whether the vehicles in different images which are captured by surveillance cameras represent the same vehicle or not, we proposed a novel vehicle face recognition algorithm based on improved Nonnegative Matrix Factorization (NMF), different from traditional vehicle recognition algorithms, there are fewer effective features in vehicle face image than in whole vehicle image in general, which brings certain difficulty to recognition. The innovations mainly include the following two aspects: 1) we proposed a novel idea that the vehicle type can be determined by a few key regions of the vehicle face such as logo, grille and so on; 2) Through adding weight, sparseness and classification property constraints to the NMF model, we can acquire the effective feature bases that represent the key regions of vehicle face image. Experimental results show that the proposed algorithm not only achieve a high correct recognition rate, but also has a strong robustness to some non-cooperative factors such as illumination variation.

Dual graph-regularized Constrained Nonnegative Matrix Factorization for Image Clustering

  • Sun, Jing;Cai, Xibiao;Sun, Fuming;Hong, Richang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권5호
    • /
    • pp.2607-2627
    • /
    • 2017
  • Nonnegative matrix factorization (NMF) has received considerable attention due to its effectiveness of reducing high dimensional data and importance of producing a parts-based image representation. Most of existing NMF variants attempt to address the assertion that the observed data distribute on a nonlinear low-dimensional manifold. However, recent research results showed that not only the observed data but also the features lie on the low-dimensional manifolds. In addition, a few hard priori label information is available and thus helps to uncover the intrinsic geometrical and discriminative structures of the data space. Motivated by the two aspects above mentioned, we propose a novel algorithm to enhance the effectiveness of image representation, called Dual graph-regularized Constrained Nonnegative Matrix Factorization (DCNMF). The underlying philosophy of the proposed method is that it not only considers the geometric structures of the data manifold and the feature manifold simultaneously, but also mines valuable information from a few known labeled examples. These schemes will improve the performance of image representation and thus enhance the effectiveness of image classification. Extensive experiments on common benchmarks demonstrated that DCNMF has its superiority in image classification compared with state-of-the-art methods.

다양한 얼굴 표현을 위한 하이브리드 nsNMF 방법 (A Hybrid Nonsmooth Nonnegative Matrix Factorization for face representation)

  • 이성주;박강령;김재희
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.957-958
    • /
    • 2008
  • The human facial appearances vary globally and locally according to identity, pose, illumination, and expression variations. In this paper, we propose a hybrid-nonsmooth nonnegative matrix factorization (hybrid-nsNMF) based appearance model to represent various facial appearances which vary globally and locally. Instead of using single smooth matrix in nsNMF, we used two different smooth matrixes and combine them to extract global and local basis at the same time.

  • PDF

오디오 컨텐츠를 위한 비음수 행렬 분해 기법 기반의 실시간 단일채널 배경 잡음 추출 기법 (Online Monaural Ambient Sound Extraction based on Nonnegative Matrix Factorization Method for Audio Contents)

  • 이석진
    • 방송공학회논문지
    • /
    • 제19권6호
    • /
    • pp.819-825
    • /
    • 2014
  • 본 논문에서는 비음수 행렬 분해 (NMF) 기법을 이용하여 단일 채널에서 배경음 성분을 추출하는 알고리즘에 대해 서술한다. 이러한 배경음 성분 추출은 오디오 업믹싱 시스템을 고려하여 개발되었으며, 기존의 연구를 통하여 분리된 배경음 신호가 업믹싱 시스템에 적용될 경우 공간감을 향상시킬 수 있다는 사실이 이미 확인된 바 있다. 다만 기존의 기법은 음향 신호를 모두 축적하여 일괄적으로 처리해야 한다는 단점이 있어, 스트리밍 시스템이나 디지털 시그널 프로세서 (DSP) 등을 이용한 시스템에서 사용되기 어렵다. 본 논문에서는 이를 해소하기 위하여 실시간 비음수 행렬 분해 기법을 이용한 배경음 추출 시스템을 고안하여 실험하였다. 실험에서 처리된 음원을 스펙트럼 평활도를 이용하여 분석한 결과, 고안된 배경음 추출 시스템이 기존의 일괄 추출 시스템과 유사한 정도로 배경음 성분을 추출했음을 확인할 수 있었다.

Audio Source Separation Based on Residual Reprojection

  • Cho, Choongsang;Kim, Je Woo;Lee, Sangkeun
    • ETRI Journal
    • /
    • 제37권4호
    • /
    • pp.780-786
    • /
    • 2015
  • This paper describes an audio source separation that is based on nonnegative matrix factorization (NMF) and expectation maximization (EM). For stable and highperformance separation, an effective auxiliary source separation that extracts source residuals and reprojects them onto proper sources is proposed by taking into account an ambiguous region among sources and a source's refinement. Specifically, an additional NMF (model) is designed for the ambiguous region - whose elements are not easily represented by any existing or predefined NMFs of the sources. The residual signal can be extracted by inserting the aforementioned model into the NMF-EM-based audio separation. Then, it is refined by the weighted parameters of the separation and reprojected onto the separated sources. Experimental results demonstrate that the proposed scheme (outlined above) is more stable and outperforms existing algorithms by, on average, 4.4 dB in terms of the source distortion ratio.

Recovery of Lost Speech Segments Using Incremental Subspace Learning

  • Huang, Jianjun;Zhang, Xiongwei;Zhang, Yafei
    • ETRI Journal
    • /
    • 제34권4호
    • /
    • pp.645-648
    • /
    • 2012
  • An incremental subspace learning scheme to recover lost speech segments online is presented. Our contributions in this work are twofold. First, the recovery problem is transformed into an interpolation problem of the time-varying gains via nonnegative matrix factorization. Second, incremental nonnegative matrix factorization is employed to allow online processing and track the evolution of speech statistics. The effectiveness of the proposed scheme is confirmed by the experiment results.