• 제목/요약/키워드: nonlocal strain gradient

검색결과 133건 처리시간 0.017초

Machine learning for structural stability: Predicting dynamics responses using physics-informed neural networks

  • Li, Zhonghong;Yan, Gongxing
    • Computers and Concrete
    • /
    • 제29권 6호
    • /
    • pp.419-432
    • /
    • 2022
  • This article deals with the vibrational response of a nanobeam made of bi-directional FG materials which is modeled via nonlocal strain gradient theory along with HSDT. Also, the nanobeam is placed on a Winkler-Pasternak foundation and is under axial mechanical loading. By using the variational energy method, the formulation and end conditions are obtained. Then, DSC-IM, as the numerical solution procedure is employed to extract the results. The material properties of the nanobeam are FG which varies in two directions with in exponential manner. The results from DDN are verified by using other papers. Lastly, a thorough parametric investigation is presented to investigated the effect of different parameters.

Conventional problem solving on the linear and nonlinear buckling of truncated conical functionally graded imperfect micro-tubes

  • Linyun, Zhou
    • Advances in nano research
    • /
    • 제13권6호
    • /
    • pp.545-559
    • /
    • 2022
  • This paper studies the buckling response of nonuniform functionally graded micro-sized tubes according to the high-order tube theory (HOTT) and classical beam theory (CBT) in addition to nonlocal strain gradient theory. The microtube is made of axially functionally graded material (AFGM). Both inner and outer tube radiuses are changed along the tube length; the microtube is the truncated conical type of tube. The nonlinear partial differential (PD) the formulations are obtained on the basis of the energy conservation method. Then, the linear and nonlinear results are computed via a powerful numerical approach. Finally, the impact of various parameters on the stability of axially functionally graded (AFG) microtube regarding the buckling analysis is discussed.

Big data analysis via computer and semi numerical simulations for dynamic responses of complex nanosystems

  • Allam, Maalla;Xiaoping, Huang;Hongkai, Zhou
    • Advances in nano research
    • /
    • 제13권6호
    • /
    • pp.599-617
    • /
    • 2022
  • In the present research, for the first time, the vibrational as well as buckling characteristics of a three-layered curved nanobeam including a core made of functionally graded (FG) material and two layers of smart material-piezo-magneto-electric-resting on a Winkler Pasternak elastic foundation are examined. The displacement field for the nanobeam is chosen via Timoshenko beam theory. Also, the size dependency is taken into account by using nonlocal strain gradient theory, aka NSGT. Then, by employing Hamilton's principle, energy procedure, the governing equations together with the boundary conditions are achieved. The solution procedure is a numerical solution called generalized differential quadrature method, or GDQM. The accuracy and reliability of the formulation alongside solution method is examined by using other published articles. Lastly, the parameter which can alter and affect the buckling or vocational behavior of the curved nanobeam is investigated in details.

Body action impacts the stability of nanomedicine tools in the drug delivery

  • Peng Zou;Wei Zhao;Jinpeng Dong;Yinyin Cao
    • Advances in nano research
    • /
    • 제14권3호
    • /
    • pp.247-259
    • /
    • 2023
  • Muscle strength and hypertrophy are equivalent when low-intensity resistance exercise is paired with blood flow restriction. This paper deals with the impact of physical exercise in the form of body activities on drug delivery using nanodevices. The body's actions impact the blood flow since the nano drug delivery devices are released into the bloodstream, and physical exercise and all the activities that change the blood flow influence the stability of these nanodevices. The nanodevice for the drug delivery purpose is modeled via nonuniform tube structures based on the high-order beam theory along with the nonlocal strain gradient theory. The nanodevice is made by a central nanomotor as well as two nanoblade in the form of truncated conical nanotubes carrying the nanomedicine. The mathematical simulation of rotating nanodevices is numerically solved, and the effect of various parameters on the stability of nanodevices has been studied in detail after the validation study.

Wave propagation in double nano-beams in thermal environments using the Reddy's high-order shear deformation theory

  • Fei Wu;Gui-Lin She
    • Advances in nano research
    • /
    • 제14권6호
    • /
    • pp.495-506
    • /
    • 2023
  • We study the bending wave, shear wave and longitudinal wave characteristics in the double nanobeams in this paper for the first time, in the process of research, based on the Reddy's higher-order shear deformation theory and considering shear layer stiffness, linear stiffness, inter-laminar stiffness, the pore volume fraction, temperature variation, functionally graded index influence on wave propagation, based on the nonlocal strain gradient theory and Hamilton variational principle, the wave equation of the double-nanometer beams are derived. Since there are three different motion states for the double nanobeams, which includes the cases of "in phase", "out of phase" and "one nanobeam fixed", the propagation characteristics of shear-, bending-, and longitudinal- waves in these three cases are discussed respectively, and some valuable conclusions are obtained.

Simulation and modeling for stability analysis of functionally graded non-uniform pipes with porosity-dependent properties

  • Peng Zhang;Jun Song;Tayebeh Mahmoudi
    • Steel and Composite Structures
    • /
    • 제48권2호
    • /
    • pp.235-250
    • /
    • 2023
  • The present paper examines the stability analysis of the buckling differentiae of the small-scale, non-uniform porosity-dependent functionally graded (PD-FG) tube. The high-order beam theory and nonlocal strain gradient theory are operated for the mathematical modeling of nanotubes based on the Hamilton principle. In this paper, the external radius function is non-uniform. In contrast, the internal radius is uniform, and the cross-section changes along the tube length due to these radius functions based on the four types of useful mathematical functions. The PD-FG material distributions are varied in the radial direction and made with ceramics and metals. The governing partial differential equations (PDEs) and associated boundary conditions are solved via a numerical method for different boundary conditions. The received outcomes concerning different presented parameters are valuable to the design and production of small-scale devices and intelligent structures.

Using nano-micro-control technology to improve breathing pressure in vocal music technique teaching innovation

  • Jiayue Cui;Hongliang Zhang
    • Advances in nano research
    • /
    • 제15권3호
    • /
    • pp.239-251
    • /
    • 2023
  • In the present study, we aim to use nanotechnology sensors/actuators to capture pressure and frequency of voice singers and to send signals for improving breathing pressure. In this regard, a circular composite structure having 3 different layers are used. The core layer is nano-composite material reinforced with graphene nanoplatelets. The face sheets are piezo electric materials connected to electrical circuit capable of measuring and applying voltage to the piezoelectric layers. This sensors have extremely smaller size than conventional sensors attached to the neck of singer and, hence, minimizes the influences on the output voice of the singer. A brief theoretical framework are presented for nonlocal strain gradient theory and geometry of the sensor is described in detail. The controlling procedure along with experimental results on 20 amateur and professional singer participants are also presented. The results of the study indicate that the participants could gain benefit from the device for improving their ability in phonation and keeping their frequency at a constant level although they have difficulty in the beginning of the experiment getting used to the device.

Finite element analysis for longitudinal vibration of nanorods based on doublet mechanics

  • Ufuk Gul;Metin Aydogdu
    • Advances in nano research
    • /
    • 제15권5호
    • /
    • pp.411-422
    • /
    • 2023
  • In the present study, the axial vibration of the nanorods is investigated in the framework of the doublet mechanics theory. The equations of motion and boundary conditions of nanorods are derived by applying the Hamilton principle. A finite element method is developed to obtain the vibration frequencies of nanorods for different boundary conditions. A two-noded higher order rod finite element is used to solve the vibration problem. The natural frequencies of nanorods obtained with the present finite element analysis are validated by comparing the results of classical doublet mechanics and nonlocal strain gradient theories. The effects of rod length, mode number and boundary conditions on the axial vibration frequencies of nanorods are examined in detail. Mode shapes of the nanorods are presented for the different boundary conditions. It is shown that the doublet mechanics model can be used for the dynamic analysis of nanotubes, and the presented finite element formulation can be used for mechanical problems of rods with unavailable analytical solutions. These new results can also be used as references for the future studies.

Stability of an improved optimization iterative algorithm to study vibrations of the multi-scale solar cells subjected to wind excitation using Series-Fourier algorithm

  • Jing Pan;Yi Hu;Guanghua Zhang
    • Steel and Composite Structures
    • /
    • 제50권1호
    • /
    • pp.45-61
    • /
    • 2024
  • This research explores the domain of organic solar cells, a photovoltaic technology employing organic electronics, which encompasses small organic molecules and conductive polymers for efficient light absorption and charge transport, leading to electricity generation from sunlight. A computer simulation is employed to scrutinize resonance and dynamic stability in OSCs, with a focus on size effects introduced by nonlocal strain gradient theory, incorporating additional terms in the governing equations related to displacement and time. Initially, the Navier method serves as an analytical solver to delve into the dynamics of design points. The accuracy of this initial step is verified through a meticulous comparison with high-quality literature. The findings underscore the substantial impact of viscoelastic foundations, size-dependent parameters, and geometric factors on the stability and dynamic deflection of OSCs, with a noteworthy emphasis on the amplified influence of size-dependent parameters in higher values of the different layers' thicknesses.

Scale-dependent buckling of embedded thermo-electro-magneto-elastic cylindrical nano-shells with different edge conditions

  • Yifei Gui;Honglei Hu
    • Advances in nano research
    • /
    • 제16권6호
    • /
    • pp.601-613
    • /
    • 2024
  • A new analytical buckling solution of a thermo-electro-magneto-elastic (TEME) cylindrical nano-shell made of BiTiO3-CoFe2O4 materials is obtained based on Hamiltonian approach. The Winkler and Pasternak elastic foundations as well as thermo-electro-magneto-mechanical loadings are applied, and two different types of edge conditions are taken into the investigation. According to nonlocal strain gradient theory (NSGT) and surface elasticity theory in conjunction with the Kirchhoff-Love theory, governing equations of the nano-shell are acquired, and the buckling bifurcation condition is obtained by adopting the Navier's method. The detailed parameter study is conducted to investigate the effects of axial and circumferential wave numbers, scale parameters, elastic foundations, edge conditions and thermo-electro-magnetic loadings on the buckling behavior of the nano-shell. The proposed model can be applied in design and analysis of TEME nano components with multi-field coupled behavior, multiple edge conditions and scale effect.