• Title/Summary/Keyword: nonlocal fiber-reinforced

Search Result 4, Processing Time 0.016 seconds

Influence of an inclined load on a nonlocal fiber-reinforced visco-thermoelastic solid via 3PHL

  • Samia M. Said
    • Structural Engineering and Mechanics
    • /
    • v.90 no.6
    • /
    • pp.569-575
    • /
    • 2024
  • The objective of this study is to investigate the influence of an inclined load, location, and time on the behavior of a fiber-reinforced visco-thermoelastic half-space. The displacement, stress, and temperature distributions are derived from the normal mode analysis. The problem is analyzed using a three-phase-lag model. MATLAB programming is employed to ascertain the physical fields with appropriate boundary conditions and to perform numerical computations. The outcomes are then examined with different inclination loads, time, and location settings.

Influence of viscosity and locality on a fiber-reinforced thermoelastic solid with two different theories

  • Samia M. Said;Mohamed I.A. Othman;Esraa M. Gamal
    • Advances in materials Research
    • /
    • v.13 no.4
    • /
    • pp.253-267
    • /
    • 2024
  • The current study attempts to discuss the effects of viscosity and locality on a fiber-reinforced thermoelastic solid. The problem is solved analytically in the context of the three-phase-lag model as well as the Green-Naghdi theory without energy dissipation (G-N II). The method of normal mode analysis is used to obtain analytical expressions for the displacement, stress, and temperature distributions. Compute the physical fields with suitable boundary conditions and perform numerical calculations using MATLAB programming. Comparisons are carried out with the results in the absence and presence of locality as well as viscosity. The locality and viscosity have great effects on all considered physical fields since the amplitudes of these quantities are vary. This procedure remains valid when a nonlocal elastic solid is replaced with an elastic one.

Nonlocal Peridynamic Models for Dynamic Brittle Fracture in Fiber-Reinforced Composites: Study on Asymmetrically Loading State (섬유강화 복합재의 동적 취성 파괴현상 규명을 위한 비국부 페리다이나믹스 해석법 개발: 비대칭 하중 연구)

  • Ha, Youn Doh;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.279-285
    • /
    • 2012
  • In this paper a computational method for a homogenized peridynamics description of unidirectional fiber-reinforced composites is presented. For these materials, dynamic brittle fracture and damage are simulated with the proposed peridynamic model. Compared with observations from dynamic experiments by Coker et al.(2001), the peridynamic computational model can reproduce various characteristics of dynamic fracture and supersonic or intersonic crack growth in asymmetrically loaded unidirectional fiber-reinforced composite plates. Also we analyze the same model in the symmetric loading condition and figure out that the asymmetric loading leads to a much higher propagation speed. Consistent results have been reported in the experiments.

On the thermo-mechanical vibration of an embedded short-fiber-reinforced nanobeam

  • Murat Akpinar;Busra Uzun;Mustafa Ozgur Yayli
    • Advances in nano research
    • /
    • v.17 no.3
    • /
    • pp.197-211
    • /
    • 2024
  • This work investigates the thermo-mechanical vibration frequencies of an embedded composite nano-beam restrained with elastic springs at both ends. Composite nanobeam consists of a matrix and short fibers as reinforcement elements placed inside the matrix. An approach based on Fourier sine series and Stokes' transform is adopted to present a general solution that can examine the elastic boundary conditions of the short-fiber-reinforced nanobeam considered with the Halpin-Tsai model. In addition to the elastic medium effect considered by the Winkler model, the size effect is also considered on the basis of nonlocal strain gradient theory. After creating an eigenvalue problem that includes all the mentioned parameters, this problem is solved to examine the effects of fiber and matrix properties, size parameters, Winkler stiffness and temperature change. The numerical results obtained at the end of the study show that increasing the rigidity of the Winkler foundation, the ratio of fiber length to diameter and the ratio of fiber Young's modulus to matrix Young's modulus increase the frequencies. However, thermal loads acting in the positive direction and an increase in the ratio of fiber mass density to matrix mass density lead to a decrease in frequencies. In this study, it is clear from the eigenvalue solution calculating the frequencies of thermally loaded embbeded short-fiber-reinforced nanobeams that changing the stiffness of the deformable springs provides frequency control while keeping the other properties of the nanobeam constant.