• Title/Summary/Keyword: nonlinear wave forces

Search Result 101, Processing Time 0.02 seconds

A Study on Longline Type Aquaculture Facilities in the Open Sea : Frequency Domain Analysis of Cable-Buoy-Weight Mooring System (내파성 가리비 연승식 양식시설에 관한 연구 - 케이블-부이-중량물 계류시스템의 주파수 영역 해석 -)

  • Shin, H.;Kim, D.S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.4
    • /
    • pp.162-174
    • /
    • 1996
  • Longline type aquaculture facilities in the open sea are based on the cable-buoy-weight mooring system. For their optimal design it is necessary to estimate tensions along the mooring lines including the attachment points of buoys and weights. However, the dynamic analysis is very complicated due to the nonlinear behaviors of the mooring lines and the effects of wave and current. In this paper, parametric studies for various buoy-weight cases are shown. Finite difference scheme is employed in obtaining eigenfrequencies in the frequency domain. Nonlinear hydrodynamic drag forces are equivalently linearized.

  • PDF

Quay Mooring Analysis (안벽계류해석)

  • Tae-Myoung,Oh;Deuk-Joon,Yum
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.3
    • /
    • pp.47-55
    • /
    • 1990
  • This paper presents the quasi-static mooring analysis model for a vessel moored at the quay. The results of this analysis will aid the designer in determining the mooring configuration for the surface vessels subjected to wind, current and wave forces. And it will also help him in selecting the equipment for the fixed mooring system. The cumulative elastic behavior of the mooring lines invokes a complicated nonlinear problem since the mooring lines are relatively short and hang in air as noncoplanar configurations. This nonlinear mooring problem is solved in this paper by the load increment technique in which the external load is increased step by step taking all sources of nonlinearity into account.

  • PDF

Whipping analysis of hull girders considering slamming impact loads (슬래밍 충격하중을 고려한 선체 휘핑 해석)

  • Seong-Whan Park;Keun-Bae Lee;Chae-Whan Rim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.3
    • /
    • pp.99-109
    • /
    • 2000
  • Elastic dynamic responses analysis program for ship hulls considering slamming impact loads due to the voyage in large amplitude waves is developed. Ship hull structures are modeled by a thin-walled beam model in order to consider effects of shear deformation. The momentum slamming theory is used to derive nonlinear hydrodynamic forces considering intersection between wave particles and ship section. For the validation of the developed computer program, motions of a V-shaped simple section model and S-175 standard container model are calculated and analyzed. In each numerical example, time histories of relative displacement, velocity and vertical bending moment of a ship section are derived, considering the effect of slamming impacts in various wave conditions.ures near the free surface as well as the wake of the hydrofoil.

  • PDF

Aerodynamic response of articulated towers: state-of-the-art

  • Zaheer, M. Moonis;Islam, Nazrul
    • Wind and Structures
    • /
    • v.11 no.2
    • /
    • pp.97-120
    • /
    • 2008
  • Wind and wave loadings have a predominant role in the design of offshore structures in general, and articulated tower in particular for a successful service and survival during normal and extreme environmental conditions. Such towers are very sensitive to the dynamic effects of wind and wind generated waves. The exposed superstructure is subjected to aerodynamic loads while the submerged substructure is subjected to hydrodynamic loads. Articulated towers are designed such that their fundamental frequency is well below the wave frequency to avoid dynamic amplification. Dynamic interaction of these towers with environmental loads (wind, waves and currents) acts to impart a lesser overall shear and overturning moment due to compliance to such forces. This compliancy introduces geometric nonlinearity due to large displacements, which becomes an important consideration in the analysis of articulated towers. Prediction of the nonlinear behaviour of these towers in the harsh ocean environment is difficult. However, simplified realistic mathematical models are employed to gain an important insight into the problem and to explore the dynamic behaviour. In this paper, various modeling approaches and solution methods for articulated towers adopted by past researchers are reviewed. Besides, reliability of articulation system, the paper also discussed the design, installation and performance of articulated towers around the world oceans.

Nonlinear Fluid Forces on Hinged Wavemakers (힌지형 조파기에 작용하는 비선형 파력)

  • Kim, Tae-In;Rocbert T. Hudspeth
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.4
    • /
    • pp.208-222
    • /
    • 1990
  • The nonlinear hydrodynamic pressure force and moment on hinged wavemakers of variable-draft are presented. A closed-form solution (correct to second-order) for the nonlinear wavemaker boundary value problem has been obtained by employing the Stokes perturbation expansion scheme. The physical significance of the second-order contributions to the hydrodynamic pressure moment are examined in detail. Design curves are presented which demonstrate both the magnitude of the second-order nonlinearities and the effects of the variable-draft hinge height. The second-order contributions to the total hydrodynamic force and moment consist of a time-dependent and a steady part. The sum of the first and second-order pressure force and moment show a significant increase over those predicted by linear wavemaker theory. The second-order effects are shown to vary with both relative water depth and wave amplitude. The second-order dynamic effects are relatively more important for hinged wavemakers with shallower drafts.

  • PDF

A Quasi-nonlinear Numerical Analysis Considering the Variable Membrane Tension of Vertical Membrane Breakwaters (연직 막체방파제의 변동 막체장력을 고려한 준 비선형 수치해석)

  • Chun, In-Suk;Kim, Sun-Sin;Park, Hyun-Ju
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.4
    • /
    • pp.290-300
    • /
    • 2009
  • The existing numerical methods on the vertical membrane breakwater have employed a linear analysis where the variable membrane tension occurring during membrane motions is assumed to be very negligible compared to the initial tension. In the present study, a quasi-nonlinear analysis is attempted such that the temporary tension of the membrane is substituted by the average tension for a wave period that is sought by an iterative calculation. The results showed that with the increase of the wave period the reflection coefficients appeared larger and the transmission coefficients smaller compared to the results of the linear analysis. The application of the quasi-nonlinear analysis also showed that the performance of the structure is closely dependent on the horizontal deformation of the membrane. In order to suppress the horizontal deformation, it may be required to take the larger initial tension of the membrane or to put additional mooring lines in the middle of the vertical faces of the membrane. But for theses methods to be effective, a largely sized surface float should be installed to secure enough buoyancy to support such downward forces.

Experiment and Analysis of Mooring System for Floating Fish Cage (해상 양식시설의 계류시스템 실험 및 해석)

  • KIM Jin-Ha;KIM Hyeon-Ju;HONG Sup
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.6
    • /
    • pp.661-665
    • /
    • 2001
  • This paper deals with optimal mooring system to secure fish cage in a desired location, Through field investigation and paper works, we surveyed disasters by breakdown of cage frame and mooring system due to higher wave attack and selected compliant buoy mooring method for shallow water mooring system against severe coastal external forces. To analyze interaction between external forces and compliant buoy mooring system, theoretical model has developed as quasi-static nonlinear analysis. After verifying the feasibility of the numerical model compared with experiment, static analysis has tried for various mooring systems with different angle of array, number of mooring points, length of horizontal and inclined rope. Optimal mooring method using compliant buoy has selected for fish cage through numerical simulation. This results can apply for preliminary design for cage mooring system.

  • PDF

Theoretical Prediction of Vertical Motion of Planing Monohull in Regular Head Waves - Improvement of Zarnick's Nonlinear Strip Method (선수 규칙파 중 단동 활주선의 연직면 거동 추정 - Zarnick 비선형 스트립 방법의 개선)

  • Zhang, Yang;Yum, Deuk-Joon;Kim, Dong-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.217-223
    • /
    • 2015
  • In order to predict the motions of a planing hull in waves, it is necessary to accurately estimate the force components acting on the hull such as the hydrodynamic force, buoyancy, and friction, as well as the wave exciting force. In particular, based on strip theory, hydrodynamic forces can be estimated by the summation of the forces acting on each cross-section of the hull. A non-linear strip method for planing hulls was mathematically developed by Zarnick, and his formula has been used to predict the vertical motions of prismatic planing hulls in regular waves. In this study, several improvements were added to Zarnick's formula to predict the vertical motions of warped planing hulls. Based on calm water model test results, the buoyancy force and moment correction coefficients were modified. Further improvements were made in the pile-up correction. Pile-up correction factors were changed according to variations of the deadrise angles using the results found in previous research. Using the same hull form, captive model tests were carried out in other recent research, and the results were compared with the present calculation results. The comparison showed reasonably good agreements between the model tests and present calculations.

A Study of Numerical Method for Analysis of the 3-Dimensional Nonlinear Wave-Making Problems (3차원 비선형 조파문제 해석을 위한 수치해법 연구)

  • Ha, Y.R.;An, N.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.5
    • /
    • pp.40-46
    • /
    • 2012
  • For free surface flow problem, a high-order spectral/boundary element method is adapted as an efficient numerical tool. This method is one of the most efficient numerical methods by which the nonlinear gravity waves can be simulated and hydrodynamic forces also can be calculated in time domain. In this method, the velocity potential is expressed as the sum of surface potential and body potential. Then, surface potential is solved by using the high-order spectral method and body potential is solved by using the high-order boundary element method. Using the combination of these two methods, the free surface flow problems of a submerged moving body are solved in time domain. In the present study, lifting surface theory is added to the former work to include effects of lift force. Therefore, a new formulation for the basic mathematical theory is introduced to contain the lift body in calculation.

Computational and Experimental Studies on Added Resistance of AFRAMAX-Class Tankers in Head Seas (선수파 중 AFRAMAX급 유조선의 부가저항에 대한 실험과 수치계산)

  • Oh, Seunghoon;Yang, Jinho;Park, Sang-Hun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.6
    • /
    • pp.471-477
    • /
    • 2015
  • When a ship sails in a seaway, the resistance on a ship increases due to incident waves and winds. The magnitude of added resistance amounts to about 15–30% of a calm-water resistance. An accurate prediction of added resistance in waves, therefore, is essential to evaluate the performance of a ship in a real sea state and to design an optimum hull form from the viewpoint of the International Maritime Organization (IMO) regulations such as Energy Efficiency Design Index (EEDI) and Energy Efficiency Operational Indicator (EEOI). The present study considers added resistance problem of AFRAMAX-class tankers with the conventional bow and Ax-bow shapes. Added resistance due to waves is successfully calculated using 1) a three-dimensional time-domain seakeeping computations based on a Rankine panel method (three-dimensional panel) and 2) a commercial CFD program (STAR-CCM+). In the hydrodynamic computations of a three-dimensional panel method, geometric nonlinearity is accounted for in Froude-Krylov and restoring forces using simple wave corrections over exact wet hull surface of the tankers. Furthermore, a CFD program is applied by performing fully nonlinear computation without using an analytical formula for added resistance or empirical values for the viscous effect. Numerical computations are validated through four degree-of-freedom model-scale seakeeping experiments in regular head waves at the deep towing tank of Hyundai Heavy Industries.