• 제목/요약/키워드: nonlinear vibration response

검색결과 374건 처리시간 0.024초

Effects of hygro-thermal environment on dynamic responses of variable thickness functionally graded porous microplates

  • Quoc-Hoa Pham;Phu-Cuong Nguyen;Van-Ke Tran
    • Steel and Composite Structures
    • /
    • 제50권5호
    • /
    • pp.563-581
    • /
    • 2024
  • This paper presents a novel finite element model for the free vibration analysis of variable-thickness functionally graded porous (FGP) microplates resting on Pasternak's medium in the hygro-thermal environment. The governing equations are established according to refined higher-order shear deformation plate theory (RPT) in construction with the modified couple stress theory. For the first time, three-node triangular elements with twelve degrees of freedom for each node are developed based on Hermitian interpolation functions to describe the in-plane displacements and transverse displacements of microplates. Two laws of variable thickness of FGP microplates, including the linear law and the nonlinear law in the x-direction are investigated. Effects of thermal and moisture changes on microplates are assumed to vary continuously from the bottom surface to the top surface and only cause tension loads in the plane, which does not change the material's mechanical properties. The numerical results of this work are compared with those of published data to verify the accuracy and reliability of the proposed method. In addition, the parameter study is conducted to explore the effects of geometrical and material properties such as the changing law of the thickness, length-scale parameter, and the parameters of the porosity, temperature, and humidity on the free vibration response of variable thickness FGP microplates. These results can be applied to design of microelectromechanical structures in practice.

Impulse 함수 기반 목표응답스펙트럼 맞춤형 지진파 보정 알고리즘의 적용성 평가 (Evaluation of Applicability of Impulse function-based Algorithm for Modification of Ground Motion to Match Target Response Spectrum)

  • 김현관;박두희
    • 한국지반환경공학회 논문집
    • /
    • 제12권4호
    • /
    • pp.53-63
    • /
    • 2011
  • 동적 지진해석 수행 시 적절한 입력지진파를 선정 생성하는 것은 매우 중요하다. 현재 국내에서는 일반적으로 국외에서 계측된 강진 기록이나 인공지진파가 입력지진파로 사용된다. 계측지진기록은 지진파의 고유성질인 시간에 따라서 주파수 특성이 변이하는 비정상(Non-Stationary) 특성을 가지고 있지만 설계 응답스펙트럼과는 일치하지 않으며 주파수영역에서 생성된 인공지진파는 설계 응답스펙트럼과는 일치하지만 정상(Stationary) 특성을 가지고 있는 단점이 있다. 본 연구에서는 계측기록의 Non-stationary 특성을 보존하되 동시에 설계 응답스펙트럼에 상응하는 지진파를 생성하였다. 적용된 기법은 Impulse 함수를 이용하여 시간영역에서 지진기록을 목표 스펙트럼에 상응하도록 보정하는 알고리즘이다. 적용 결과, 시간영역 변화 알고리즘은 성공적으로 계측 지진기록을 설계 응답스펙트럼와 일치하도록 조정할 수 있으며 원 지진기록의 Non-stationary 특성을 보존하는 것으로 나타났다. 나아가 계측 지진기록과 보정된 지진기록을 적용한 비선형 지반응답해석을 수행한 결과, 보정된 지진파를 이용한 결과가 보다 합리적인 것으로 나타났다. 본 연구에서 변환된 지진기록은 기존 기록의 문제점을 보완하는 진보된 입력지진파인 것으로 나타났으며 추후 지진해석 시 이를 준용하는 것이 합리적일 것으로 판단된다.

Seismic loss-of-support conditions of frictional beam-to-column connections

  • Demartino, Cristoforo;Monti, Giorgio;Vanzi, Ivo
    • Structural Engineering and Mechanics
    • /
    • 제61권4호
    • /
    • pp.527-538
    • /
    • 2017
  • The evaluation of the loss-of-support conditions of frictional beam-to-column connections using simplified numerical models describing the transverse response of a portal-like structure is presented in this paper considering the effects of the seismic-hazard disaggregation. Real earthquake time histories selected from European Strong-motion Database (ESD) are used to show the effects of the seismic-hazard disaggregation on the beam loss-of-support conditions. Seismic events are classified according to different values of magnitudes, epicentral distances and soil conditions (stiff or soft soil) highlighting the importance of considering the characteristics of the seismic input in the assessment of the loss-of-support conditions of frictional beam-to-column connections. A rigid and an elastic model of a frame of a precast industrial building (2-DoF portal-like model) are presented and adopted to find the minimum required friction coefficient to avoid sliding. Then, the mean value of the minimum required friction coefficient with an epicentral distance bin of 10 km is calculated and fitted with a linear function depending on the logarithm of the epicentral distance. A complete parametric analysis varying the horizontal and vertical period of vibration of the structure is performed. Results show that the loss-of-support condition is strongly influenced by magnitude, epicentral distance and soil conditions determining the frequency content of the earthquake time histories and the correlation between the maxima of the horizontal and vertical components. Moreover, as expected, dynamic characteristics of the structure have also a strong influence. Finally, the effect of the column nonlinear behavior (i.e. formation of plastic hinges at the base) is analyzed showing that the connection and the column are a series system where the maximum force is limited by the element having the minimum strength. Two different longitudinal reinforcement ratios are analyzed demonstrating that the column strength variation changes the system response.

동적과도응답을 사용한 구조물의 손상진단 (Structural Damage Assessment Using Transient Dynamic Response)

  • 신수봉;오성호;곽임종;고현무
    • 한국전산구조공학회논문집
    • /
    • 제13권4호
    • /
    • pp.395-404
    • /
    • 2000
  • 강제진동을 가한 구조물의 제한된 위치에서 측정한 가속도를 사용하여 손상을 확인하고 평가하는 알고리듬을 개발하였다. 개발된 알고리듬에서는 선형적 구속-비선형 최적화에 의해 최적의 구조변수를 구하여 구조물을 인식하는 시간영역-시스템 인식기법을 사용하였다. 동적운동방정식의 오차를 최소화하도록 최적의 변수를 추정하였으며, 제한된 위치에서 측정된 가속도 자료를 이용하여 손상된 부재를 찾기 위하여 적합적 변수모음법을 적용하였다. 손상은 측정된 가속도의 시간이력에 시간창의 개념을 적용하여 통계적으로 평가하였다. 가속도가 측정된 자유도에서의 변위와 속도는 측정된 가속도를 적분하여 계산하였으며, 미측정 자유도에서는 변위를 추가의 미지변수로 추정하고, 속도와 가속도는 추정된 변위의 차분에 의해 수치적으로 계산하였다. 개발된 알고리듬의 효율성을 검증하기 위하여 트러스에 대한 수치모의실험을 실시하였다. 손상지수의 한계치를 정하고 각 부재에서의 손상가능도를 계산하기 위하여 자료교란법을 적용하였다.

  • PDF

그림자 영향을 고려한 PV 시스템의 VPO MPPT 제어 (Development of VPO MPPT of PV System Considering Shadow Influence)

  • 최정식;고재섭;정동화
    • 전력전자학회논문지
    • /
    • 제16권5호
    • /
    • pp.521-531
    • /
    • 2011
  • 본 논문은 그림자 영향을 고려한 PV(Photovoltaic) 시스템의 VPO(Variable Perturbation & Observation)MPPT(Maximum Power Point Tracking) 제어를 제시한다. 태양전지의 출력 특성은 비선형이고 온도, 일사량 및 그림자의 영향을 많이 받는다. MPPT 제어는 태양광발전 시스템의 출력 및 효율을 증가시키기 위한 매우 중요한 기술이다. 종래의 PO(Perturbation & Observation)와 IC(Incremental conductance) 등은 지속적인 자려진동에 의해 MPP(Maximum Power Point)를 찾는 방법으로 그림자 영향에 의해 출력이 급격하게 변할 경우 MPPT 제어를 수행하지 못한다. 이러한 문제점을 해결하기 위해 출력 변동에 따라 스텝 값이 변하는 새로운 제어 알고리즘을 제시한다. 제시한 알고리즘은 일사량, 온도 및 그림자 영향에 대해 종래의 제어 알고리즘과 응답특성을 비교하고 이를 통해 제시한 알고리즘의 타당성을 입증한다.

A generalized adaptive variational mode decomposition method for nonstationary signals with mode overlapped components

  • Liu, Jing-Liang;Qiu, Fu-Lian;Lin, Zhi-Ping;Li, Yu-Zu;Liao, Fei-Yu
    • Smart Structures and Systems
    • /
    • 제30권1호
    • /
    • pp.75-88
    • /
    • 2022
  • Engineering structures in operation essentially belong to time-varying or nonlinear structures and the resultant response signals are usually non-stationary. For such time-varying structures, it is of great importance to extract time-dependent dynamic parameters from non-stationary response signals, which benefits structural health monitoring, safety assessment and vibration control. However, various traditional signal processing methods are unable to extract the embedded meaningful information. As a newly developed technique, variational mode decomposition (VMD) shows its superiority on signal decomposition, however, it still suffers two main problems. The foremost problem is that the number of modal components is required to be defined in advance. Another problem needs to be addressed is that VMD cannot effectively separate non-stationary signals composed of closely spaced or overlapped modes. As such, a new method named generalized adaptive variational modal decomposition (GAVMD) is proposed. In this new method, the number of component signals is adaptively estimated by an index of mean frequency, while the generalized demodulation algorithm is introduced to yield a generalized VMD that can decompose mode overlapped signals successfully. After that, synchrosqueezing wavelet transform (SWT) is applied to extract instantaneous frequencies (IFs) of the decomposed mono-component signals. To verify the validity and accuracy of the proposed method, three numerical examples and a steel cable with time-varying tension force are investigated. The results demonstrate that the proposed GAVMD method can decompose the multi-component signal with overlapped modes well and its combination with SWT enables a successful IF extraction of each individual component.

Seismic deformation demands on rectangular structural walls in frame-wall systems

  • Kazaz, Ilker
    • Earthquakes and Structures
    • /
    • 제10권2호
    • /
    • pp.329-350
    • /
    • 2016
  • A parametric study was conducted to investigate the seismic deformation demands in terms of drift ratio, plastic base rotation and compression strain on rectangular wall members in frame-wall systems. The wall index defined as ratio of total wall area to the floor plan area was kept as variable in frame-wall models and its relation with the seismic demand at the base of the wall was investigated. The wall indexes of analyzed models are in the range of 0.2-2%. 4, 8 and 12-story frame-wall models were created. The seismic behavior of frame-wall models were calculated using nonlinear time-history analysis and design spectrum matched ground motion set. Analyses results revealed that the increased wall index led to significant reduction in the top and inter-story displacement demands especially for 4-story models. The calculated average inter-story drift decreased from 1.5% to 0.5% for 4-story models. The average drift ratio in 8- and 12-story models has changed from approximately 1.5% to 0.75%. As the wall index increases, the dispersion in the calculated drifts due to ground motion variability decreased considerably. This is mainly due to increase in the lateral stiffness of models that leads their fundamental period of vibration to fall into zone of the response spectra that has smaller dispersion for scaled ground motion data set. When walls were assessed according to plastic rotation limits defined in ASCE/SEI 41, it was seen that the walls in frame-wall systems with low wall index in the range of 0.2-0.6% could seldom survive the design earthquake without major damage. Concrete compressive strains calculated in all frame-wall structures were much higher than the limit allowed for design, ${\varepsilon}_c$=0.0035, so confinement is required at the boundaries. For rectangular walls above the wall index value of 1.0% nearly all walls assure at least life safety (LS) performance criteria. It is proposed that in the design of dual systems where frames and walls are connected by link and transverse beams, the minimum value of wall index should be greater than 0.6%, in order to prevent excessive damage to wall members.

Elasto-plastic time history analysis of an asymmetrical twin-tower rigid-connected structure

  • Wu, Xiaohan;Sun, Yanfei;Rui, Mingzhuo;Yan, Min;Li, Lishu;Liu, Dongze
    • Computers and Concrete
    • /
    • 제12권2호
    • /
    • pp.211-228
    • /
    • 2013
  • The structure analyzed in this paper has particular building style and special structural system. It is a rigid-connected twin-tower skyscraper with asymmetrical distribution of stiffness and masses in two towers. Because of the different stiffness between the north and the south towers, the torsion seismic vibration is significant. In this paper, in order to study the seismic response of the structure under both frequent low-intensity earthquakes as well as rare earthquakes at the levels of intensity 7, the analysis model is built and analyzed with NosaCAD. NosaCAD is an nonlinear structure analysis software based on second-development of AutoCAD with ObjectARX. It has convenient modeling function, high computational efficiency and diversity post-processing functions. The deformations, forces and damages of the structure are investigated based on the analysis. According to the analysis, there is no damage on the structure under frequent earthquakes, and the structure has sufficient capacity and ductility to resist rare earthquakes. Therefore the structure can reach the goal of no damage under frequent earthquakes and no collapse under rare earthquakes. The deformation of the structure is below the limit in Chinese code. The time sequence and distribution of damages on tubes are reasonable, which can dissipate some dynamic energy. At last, according to forces, load-carrying capacity and damage of elements, there are some suggestions on increasing the reinforcement in the core tube at base and in stiffened stories.

Magnetorheological elastomer base isolator for earthquake response mitigation on building structures: modeling and second-order sliding mode control

  • Yu, Yang;Royel, Sayed;Li, Jianchun;Li, Yancheng;Ha, Quang
    • Earthquakes and Structures
    • /
    • 제11권6호
    • /
    • pp.943-966
    • /
    • 2016
  • Recently, magnetorheological elastomer (MRE) material and its devices have been developed and attracted a good deal of attention for their potentials in vibration control. Among them, a highly adaptive base isolator based on MRE was designed, fabricated and tested for real-time adaptive control of base isolated structures against a suite of earthquakes. To perfectly take advantage of this new device, an accurate and robust model should be built to characterize its nonlinearity and hysteresis for its application in structural control. This paper first proposes a novel hysteresis model, in which a nonlinear hyperbolic sine function spring is used to portray the strain stiffening phenomenon and a Voigt component is incorporated in parallel to describe the solid-material behaviours. Then the fruit fly optimization algorithm (FFOA) is employed for model parameter identification using testing data of shear force, displacement and velocity obtained from different loading conditions. The relationships between model parameters and applied current are also explored to obtain a current-dependent generalized model for the control application. Based on the proposed model of MRE base isolator, a second-order sliding mode controller is designed and applied to the device to provide a real-time feedback control of smart structures. The performance of the proposed technique is evaluated in simulation through utilizing a three-storey benchmark building model under four benchmark earthquake excitations. The results verify the effectiveness of the proposed current-dependent model and corresponding controller for semi-active control of MRE base isolator incorporated smart structures.

Performance of passive and active MTMDs in seismic response of Ahvaz cable-stayed bridge

  • Zahrai, Seyed Mehdi;Froozanfar, Mohammad
    • Smart Structures and Systems
    • /
    • 제23권5호
    • /
    • pp.449-466
    • /
    • 2019
  • Cable-stayed bridges are attractive due to their beauty, reducing material consumption, less harm to the environment and so on, in comparison with other kinds of bridges. As a massive structure with long period and low damping (0.3 to 2%) under many dynamic loads, these bridges are susceptible to fatigue, serviceability disorder, damage or even collapse. Tuned Mass Damper (TMD) is a suitable controlling system to reduce the vibrations and prevent the threats in such bridges. In this paper, Multi Tuned Mass Damper (MTMD) system is added to the Ahvaz cable stayed Bridge in Iran, to reduce its seismic vibrations. First, the bridge is modeled in SAP2000 followed with result verification. Dead and live loads and the moving loads have been assigned to the bridge. Then the finite element model is developed in OpenSees, with the goal of running a nonlinear time-history analysis. Three far-field and three near-field earthquake records are imposed to the model after scaling to the PGA of 0.25 g, 0.4 g, 0.55 g and 0.7 g. Two MTMD systems, passive and active, with the number of TMDs from 1 to 8, are placed in specific points of the main span of bridge, adding a total mass ratio of 1 to 10% to the bridge. The parameters of the TMDs are optimized using Genetic Algorithm (GA). Also, the optimum force for active control is achieved by Fuzzy Logic Control (FLC). The results showed that the maximum displacement of the center of the bridge main span reduced 33% and 48% respectively by adding passive and active MTMD systems. The RMS of displacement reduced 37% and 47%, the velocity 36% and 42% and also the base shear in pylons, 27% and 47%, respectively by adding passive and active systems, in the best cases.