• Title/Summary/Keyword: nonlinear vibration response

Search Result 374, Processing Time 0.027 seconds

A Study on Robust and Precise Position Control of PMSM under Disturbance Variation (외란의 변화가 있는 PMSM의 강인하고 정밀한 위치 제어에 대한 연구)

  • Lee, Ik-Sun;Yeo, Won-Seok;Jung, Sung-Chul;Park, Keon-Ho;Ko, Jong-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1423-1433
    • /
    • 2018
  • Recently, a permanent magnet synchronous motor of middle and small-capacity has high torque, high precision control and acceleration / deceleration characteristics. But existing control has several problems that include unpredictable disturbances and parameter changes in the high accuracy and rigidity control industry or nonlinear dynamic characteristics not considered in the driving part. In addition, in the drive method for the control of low-vibration and high-precision, the process of connecting the permanent magnet synchronous motor and the load may cause the response characteristic of the system to become very unstable, to cause vibration, and to overload the system. In order to solve these problems, various studies such as adaptive control, optimal control, robust control and artificial neural network have been actively conducted. In this paper, an incremental encoder of the permanent magnet synchronous motor is used to detect the position of the rotor. And the position of the detected rotor is used for low vibration and high precision position control. As the controller, we propose augmented state feedback control with a speed observer and first order deadbeat disturbance observer. The augmented state feedback controller performs control that the position of the rotor reaches the reference position quickly and precisely. The addition of the speed observer to this augmented state feedback controller compensates for the drop in speed response characteristics by using the previously calculated speed value for the control. The first order deadbeat disturbance observer performs control to reduce the vibration of the motor by compensating for the vibrating component or disturbance that the mechanism has. Since the deadbeat disturbance observer has a characteristic of being vulnerable to noise, it is supplemented by moving average filter method to reduce the influence of the noise. Thus, the new controller with the first order deadbeat disturbance observer can perform more robustness and precise the position control for the influence of large inertial load and natural frequency. The simulation stability and efficiency has been obtained through C language and Matlab Simulink. In addition, the experiment of actual 2.5[kW] permanent magnet synchronous motor was verified.

Dynamic analysis and controller design for a slider-crank mechanism with piezoelectric actuators

  • Akbari, Samin;Fallahi, Fatemeh;Pirbodaghi, Tohid
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.312-321
    • /
    • 2016
  • Dynamic behaviour of a slider-crank mechanism associated with a smart flexible connecting rod is investigated. Effect of various mechanisms' parameters including crank length, flexibility of the connecting rod and the slider's mass on the dynamic behaviour is studied. Two control schemes are proposed for elastodynamic vibration suppression of the flexible connecting rod and also obtaining a constant angular velocity for the crank. The first scheme is based on feedback linearization approach and the second one is based on a sliding mode controller. The input signals are applied by an electric motor located at the crank ground joint, and two layers of piezoelectric film bonded to the top and bottom surfaces of the connecting rod. Both of the controllers successfully suppress the vibrations of the elastic linkage.

Design of sandwich type piezoelectric resonator for underwater acoustic transducer (수중 음향 트랜스듀서용 샌드위치형 압전 진동체의 설계)

  • 조치영;김인수;윤형규
    • Journal of KSNVE
    • /
    • v.5 no.4
    • /
    • pp.577-583
    • /
    • 1995
  • The sandwich type piezoelectric resonator is widely used for the acoustic sources of underwater acoustic transducers, whose important design parameters are shapes, materials, dimensions and supporting methods. Practical design method of resonators consists of manufacturing, experiments and modification so that it requires much time and expenses. In this study, an analytical design method of sandwich type piezoelectric resonators is presented based on the nonlinear optimization technique. The proposed method is applied to the design of an example resonator model in order to maximize the output powers. For the investigation of performance according to the division and their electrical connection, three types of resonators are manufactured. In addition, their dynamic characteristics such as electrical admittance and transmitting voltage response are measured and compared.

  • PDF

Aeroelastic Characteri stics of Rotor Blades with Trailing Edge Flaps

  • Lim, In-Gyu;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.115-121
    • /
    • 2007
  • The aeroelastic analysis of rotor blades with trailing edge flaps, focused on reducing vibration while minimizing control effort, are investigated using large deflection-type beam theory in forward flight. The rotor blade aerodynamic forces are calculated using two-dimensional quasi-steady strip theory. For the analysis of forward flight, the nonlinear periodic blade steady response is obtained by integrating the full finite element equation in time through a coupled trim procedure with a vehicle trim. The objective function, which includes vibratory hub loads and active flap control inputs, is minimized by an optimal control process. Numerical simulations are performed for the steady-state forward flight of various advance ratios. Also, numerical results of the steady blade and flap deflections, and the vibratory hub loads are presented for various advance ratios and are compared with the previously published analysis results obtained from modal analysis based on a moderate deflection-type beam theory.

Active feedback control for cable vibrations

  • Ubertini, Filippo
    • Smart Structures and Systems
    • /
    • v.4 no.4
    • /
    • pp.407-428
    • /
    • 2008
  • The nonlinear mechanics of cable vibration is caught either by analytical or numerical models. Nevertheless, the choice of the most appropriate method, in consideration of the problem under study, is not straightforward. A feedback control policy might even enhance the complexity of the system. Thus, in order to design a suitable controller, different approaches are here adopted. Devices mounted transversely to the cable in the two directions, close to one of its ends, supply the feedback control action based on the observation of the response in a few points. The low order terms of the control law are, at first, analyzed in the framework of linear models. Explicit analytic solutions are derived for this purpose. The effectiveness of high order terms in the control law is then explored by means of a finite element model(FEM), which accounts for high order harmonics. A suitably dimensional analytical Galerkin model is finally derived, to investigate the effectiveness of the proposed control strategy, when applied to a physical model.

A Smooth Position Control of Ultrasonic Motor Using Fuzzy Logic

  • Lee, Jung-Hoon;Bin, Hang
    • Journal of IKEEE
    • /
    • v.13 no.3
    • /
    • pp.32-38
    • /
    • 2009
  • Ultrasonic motor (USM) is a new type motor which is driven by the ultrasonic vibration of piezoelectric elements. It possess many useful features that electromagnetic motors do not have, such as low speed and high torque. However, ultrasonic motor has heavy nonlinear speed characteristics and is sensitive to the change of drive conditions. In order to solve these problems, we present a smooth position control scheme for ultrasonic motor using fuzzy logic control with human expertise and without the need of any precise mathematical model. A "smooth operation" consideration is included when constructing the fuzzy rule base in order to achieve a most smooth response. An experimental position control system is constructed to show the effectiveness of the proposed control scheme.

  • PDF

Modal pushover analysis of self-centering concentrically braced frames

  • Tian, Li;Qiu, Canxing
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.251-261
    • /
    • 2018
  • Self-centering concentrically braced frames (SCCBFs) are emerging as high performance seismically resistant braced framing system, due to the capacity of withstanding strong earthquake attacks and promptly recovering after events. To get a further insight into the seismic performance of SCCBFs, systematical evaluations are currently conducted from the perspective of modal contributions. In this paper, the modal pushover analysis (MPA) approach is utilized to obtain the realistic seismic demands by summarizing the contribution of each single vibration mode. The MPA-based results are compared with the exact results from nonlinear response history analysis. The adopted SCCBFs originate from existing buckling-restrained braced frames (BRBF), which are also analyzed for purpose of comparison. In the analysis of these comparable framing systems, interested performance indices that closely relate to the structural damage degree include the interstory drift ratio, floor acceleration, and absorbed hysteretic energy. The study shows that the MPA approach produces acceptable predictions in comparison to the exact results for SCCBFs. In addition, the high-modes effect on the seismic behavior increases with the building height, and is more evident in the SCCBFs than the BRBFs.

Immune Algorithm Based Active PID Control for Structure Systems

  • Lee, Young-Jin;Cho, Hyun-Cheol;Lee, Kwon-Soon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1823-1833
    • /
    • 2006
  • An immune algorithm is a kind of evolutional computation strategies, which is developed in the basis of a real immune mechanism in the human body. Recently, scientific or engineering applications using this scheme are remarkably increased due to its significant ability in terms of adaptation and robustness for external disturbances. Particularly, this algorithm is efficient to search optimal parameters against complicated dynamic systems with uncertainty and perturbation. In this paper, we investigate an immune algorithm embedded Proportional Integral Derivate (called I-PID) control, in which an optimal parameter vector of the controller is determined offline by using a cell-mediated immune response of the immunized mechanism. For evaluation, we apply the proposed control to mitigation of vibrations for nonlinear structural systems, cased by external environment load such as winds and earthquakes. Comparing to traditional controls under same simulation scenarios, we demonstrate the innovation control is superior especially in robustness aspect.

Human induced vibration vs. cable-stay footbridge deterioration

  • Casciati, S.
    • Smart Structures and Systems
    • /
    • v.18 no.1
    • /
    • pp.17-29
    • /
    • 2016
  • In this paper, the possibility of using human induced loading (HIL) to detect a decrease of tension in the cable-stays of an existing footbridge is investigated. First, a reliable finite elements model of an existing footbridge is developed by calibration with experimental data. Next, estimates of the tension in the cables are derived and their dependency on the modal features of the deck is investigated. The modelling of the HIL is briefly discussed and used to perform the nonlinear, large strain, dynamic finite elements analyses. The results of these analyses are assessed with focus on characterizing the time histories of the tension in the cables under pedestrian crossing and their effects on the deck response for different initial conditions. Finally, the control perspective is introduced in view of further research.

Periodic seismic performance evaluation of highway bridges using structural health monitoring system

  • Yi, Jin-Hak;Kim, Dookie;Feng, Maria Q.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.5
    • /
    • pp.527-544
    • /
    • 2009
  • In this study, the periodic seismic performance evaluation scheme is proposed using a structural health monitoring system in terms of seismic fragility. An instrumented highway bridge is used to demonstrate the evaluation procedure involving (1) measuring ambient vibration of a bridge under general vehicle loadings, (2) identifying modal parameters from the measured acceleration data by applying output-only modal identification method, (3) updating a preliminary finite element model (obtained from structural design drawings) with the identified modal parameters using real-coded genetic algorithm, (4) analyzing nonlinear response time histories of the structure under earthquake excitations, and finally (5) developing fragility curves represented by a log-normal distribution function using maximum likelihood estimation. It is found that the seismic fragility of a highway bridge can be updated using extracted modal parameters and can also be monitored further by utilizing the instrumented structural health monitoring system.