• Title/Summary/Keyword: nonlinear time series

Search Result 453, Processing Time 0.026 seconds

A Meta-Analysis of Air Pollution in Relation to Daily Mortality in Seven Major Cities of Korea, 1998-2001 (메타분석을 적용한 전국 7개 대도시의 대기오염과 일일사망발생의 상관성 연구(1998년$\sim$2001년))

  • Cho, Yong-Sung;Lee, Jong-Tae;Son, Ji-Young;Kim, Yoon-Shin
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.4 s.91
    • /
    • pp.304-315
    • /
    • 2006
  • This study is performed to reexamine the association between ambient air pollution and daily mortality in seven major cities of Korea using a method of meta-analysis with the data filed for the period 1998-2001. These cities account for half of the Korean population (about 23 million). The observed concentrations of carbon monoxide (CO, mean=1.08 ppm), ozone ($O_3$, mean=33.97 ppb), particulate matter less than 10 ${\mu}m$ ($PM_{10},\;mean=57.11\;{\mu}g/m^3$), nitrogen dioxide ($NO_2$, mean=25.09 ppb), and sulfur dioxide ($SO_2$, mean=9.14 ppb) during the study period were at levels below Korea's current ambient air quality standards. Generalized additive models were applied to allow for the highly flexible fitting of seasonal and long-term time trends in air pollution as well as nonlinear associations with weather variables, such as air temperature and relative humidity. Also, we calculated a weighted mean as a meta-analysis summary of the estimates and its standard error. In city-specific analyses, an increase of $41.17{\mu}g/m^3(IQR)\;of\;PM_{10}$ corresponded to $1{\sim}12%$ more deaths, given constant weather conditions. Like most of air pollution epidemiologic studies, this meta-analysis cannot avoid fleeing from measurement misclassification since no personal measurement was taken. However, we can expect that a measurement bias be reduced in district-specific estimate since a monitoring station is better representative of air quality of the matched district. Significant heterogeneity was found for the effect of all pollutants. The estimated relative risks from meta-like analysis increased compared to those relative risks from pooled analysis. The similar results to those from the previous studies indicated existence of health effect of air pollution at current levels in many industrialized countries, including Korea.

Neural Networks-Genetic Algorithm Model for Modeling of Nonlinear Evaporation and Evapotranspiration Time Series 1. Theory and Application of the Model (비선형 증발량 및 증발산량 시계열의 모형화를 위한 신경망-유전자 알고리즘 모형 1. 모형의 이론과 적용)

  • Kim, Sung-Won;Kim, Hung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.1 s.174
    • /
    • pp.73-88
    • /
    • 2007
  • The goal of this research is to develop and apply the generalized regression neural networks model(GRNNM) embedding genetic algorithm(GA) for the estimation and calculation of the pan evaporation(PE), which is missed or ungaged and of the alfalfa reference evapotranspiration ($ET_r$), which is not measured in South Korea. Since the observed data of the alfalfa 37. using Iysimeter have not been measured for a long time in South Korea, the Penman-Monteith(PM) method is used to estimate the observed alfalfa $ET_r$. In this research, we develop the COMBINE-GRNNM-GA(Type-1) model for the calculation of the optimal PE and the alfalfa $ET_r$. The suggested COMBINE-GRNNM-GA(Type-1) model is evaluated through training, testing, and reproduction processes. The COMBINE-GRNNM-GA(Type-1) model can evaluate the suggested climatic variables and also construct the reliable data for the PE and the alfalfa $ET_r$. We think that the constructive data could be used as the reference data for irrigation and drainage networks system in South Korea.

Modified Traditional Calibration Method of CRNP for Improving Soil Moisture Estimation (산악지형에서의 CRNP를 이용한 토양 수분 측정 개선을 위한 새로운 중성자 강도 교정 방법 검증 및 평가)

  • Cho, Seongkeun;Nguyen, Hoang Hai;Jeong, Jaehwan;Oh, Seungcheol;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.665-679
    • /
    • 2019
  • Mesoscale soil moisture measurement from the promising Cosmic-Ray Neutron Probe (CRNP) is expected to bridge the gap between large scale microwave remote sensing and point-based in-situ soil moisture observations. Traditional calibration based on $N_0$ method is used to convert neutron intensity measured at the CRNP to field scale soil moisture. However, the static calibration parameter $N_0$ used in traditional technique is insufficient to quantify long term soil moisture variation and easily influenced by different time-variant factors, contributing to the high uncertainties in CRNP soil moisture product. Consequently, in this study, we proposed a modified traditional calibration method, so-called Dynamic-$N_0$ method, which take into account the temporal variation of $N_0$ to improve the CRNP based soil moisture estimation. In particular, a nonlinear regression method has been developed to directly estimate the time series of $N_0$ data from the corrected neutron intensity. The $N_0$ time series were then reapplied to generate the soil moisture. We evaluated the performance of Dynamic-$N_0$ method for soil moisture estimation compared with the traditional one by using a weighted in-situ soil moisture product. The results indicated that Dynamic-$N_0$ method outperformed the traditional calibration technique, where correlation coefficient increased from 0.70 to 0.72 and RMSE and bias reduced from 0.036 to 0.026 and -0.006 to $-0.001m^3m^{-3}$. Superior performance of the Dynamic-$N_0$ calibration method revealed that the temporal variability of $N_0$ was caused by hydrogen pools surrounding the CRNP. Although several uncertainty sources contributed to the variation of $N_0$ were not fully identified, this proposed calibration method gave a new insight to improve field scale soil moisture estimation from the CRNP.

Analysis of Research Trends in SIAM Journal on Applied Mathematics Using Topic Modeling (토픽모델링을 활용한 SIAM Journal on Applied Mathematics의 연구 동향 분석)

  • Kim, Sung-Yeun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.607-615
    • /
    • 2020
  • The purpose of this study was to analyze the research status and trends related to the industrial mathematics based on text mining techniques with a sample of 4910 papers collected in the SIAM Journal on Applied Mathematics from 1970 to 2019. The R program was used to collect titles, abstracts, and key words from the papers and to analyze topic modeling techniques based on LDA algorithm. As a result of the coherence score on the collected papers, 20 topics were determined optimally using the Gibbs sampling methods. The main results were as follows. First, studies on industrial mathematics were conducted in a variety of mathematics fields, including computational mathematics, geometry, mathematical modeling, topology, discrete mathematics, probability and statistics, with a focus on analysis and algebra. Second, 5 hot topics (mathematical biology, nonlinear partial differential equation, discrete mathematics, statistics, topology) and 1 cold topic (probability theory) were found based on time series regression analysis. Third, among the fields that were not reflected in the 2015 revised mathematics curriculum, numeral system, matrix, vector in space, and complex numbers were extracted as the contents to be covered in the high school mathematical curriculum. Finally, this study suggested strategies to activate industrial mathematics in Korea, described the study limitations, and proposed directions for future research.

Multi-FNN Identification by Means of HCM Clustering and ITs Optimization Using Genetic Algorithms (HCM 클러스터링에 의한 다중 퍼지-뉴럴 네트워크 동정과 유전자 알고리즘을 이용한 이의 최적화)

  • 오성권;박호성
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.5
    • /
    • pp.487-496
    • /
    • 2000
  • In this paper, the Multi-FNN(Fuzzy-Neural Networks) model is identified and optimized using HCM(Hard C-Means) clustering method and genetic algorithms. The proposed Multi-FNN is based on Yamakawa's FNN and uses simplified inference as fuzzy inference method and error back propagation algorithm as learning rules. We use a HCM clustering and Genetic Algorithms(GAs) to identify both the structure and the parameters of a Multi-FNN model. Here, HCM clustering method, which is carried out for the process data preprocessing of system modeling, is utilized to determine the structure of Multi-FNN according to the divisions of input-output space using I/O process data. Also, the parameters of Multi-FNN model such as apexes of membership function, learning rates and momentum coefficients are adjusted using genetic algorithms. A aggregate performance index with a weighting factor is used to achieve a sound balance between approximation and generalization abilities of the model. The aggregate performance index stands for an aggregate objective function with a weighting factor to consider a mutual balance and dependency between approximation and predictive abilities. According to the selection and adjustment of a weighting factor of this aggregate abjective function which depends on the number of data and a certain degree of nonlinearity, we show that it is available and effective to design an optimal Multi-FNN model. To evaluate the performance of the proposed model, we use the time series data for gas furnace and the numerical data of nonlinear function.

  • PDF

Forecasting Economic Impacts of Construction R&D Investment: A Quantitative System Dynamics Forecast Model Using Qualitative Data (건설 분야 정부 R&D 투자의 사업별 경제적 파급효과 분석 - 정성적 자료 기반의 시스템다이내믹스 예측모형 개발 -)

  • Hwang, Sungjoo;Park, Moonseo;Lee, Hyun-Soo;Jang, Youjin;Moon, Myung-Gi;Moon, Yeji
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.2
    • /
    • pp.131-140
    • /
    • 2013
  • Econometric forecast models based on past time-series data have been applied to a wide variety of applications due to their advantages in short-term point estimating. These models are particularly used in predicting the impact of governmental research and development (R&D) programs because program managers should assert their feasibility due to R&D program's huge amount of budget. The construction governmental R&D programs, however, separately make an investment by dividing total budget into five sub-business area. It make R&D program managers difficult to understand how R&D programs affect the whole system including economy because they are restricted with regard to many dependent and dynamic variables. In this regard, system dynamics (SD) model provides an analytic solution for complex, nonlinear, and dynamic systems such as the impacts of R&D programs by focusing on interactions among variables and understanding their structures. This research, therefore, developed SD model to capture the different impacts of five construction R&D sub-business by considering different characteristics of sub-business area. To overcome the SD's disadvantages in point estimating, this research also proposed the method for constructing quantitative forecasting model using qualitative data. Understanding the different characteristics of each construction R&D sub-business can support R&D program managers to demonstrate their feasibility of capital investment.

Evaluation of Accuracy of Modified Equivalent Linear Method (수정된 등가선형해석기법의 정확성 평가)

  • Jeong, Chang-Gyun;Kwak, Dong-Yeop;Park, Duhee;Kim, Kwangkyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.6
    • /
    • pp.5-20
    • /
    • 2010
  • One-dimensional equivalent linear site response analysis is widely used in practice due to its simplicity, requiring only few input parameters, and low computational cost. The main limitation of the procedure is that it is essentially a linear method, in which the time dependent change in the soil properties cannot be modeled and constant values of shear modulus and damping is used throughout the duration of the analysis. Various forms of modified equivalent linear analyses have been developed to enhance the accuracy of the equivalent linear method by incorporating the dependence of the shear strain with the loading frequency. The methods are identical in that it uses the shear strain Fourier spectrum as the backbone of the analysis, but differ in the method in which the strain Fourier spectrum is smoothed. This study used two domestically measured soil profiles to perform a series of nonlinear, equivalent linear, and modified equivalent linear site response analyses to verify the accuracy of two modified procedures. The results of the analyses indicate that the modified equivalent linear analysis can highly overestimate the amplification of the high frequency components of the ground motion. The degree of overestimation is dependent on the characteristics of the input ground motion. Use of a motion rich in high frequency contents can result in unrealistic response.

Neural Networks-Genetic Algorithm Model for Modeling of Nonlinear Evaporation and Evapotranpiration Time Series. 2. Optimal Model Construction by Uncertainty Analysis (비선형 증발량 및 증발산량 시계열의 모형화를 위한 신경망-유전자 알고리즘 모형 2. 불확실성 분석에 의한 최적모형의 구축)

  • Kim, Sung-Won;Kim, Hung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.1 s.174
    • /
    • pp.89-99
    • /
    • 2007
  • Uncertainty analysis is used to eliminate the climatic variables of input nodes and construct the model of an optimal type from COMBINE-GRNNM-GA(Type-1), which have been developed in this issue(2007). The input variable which has the lowest smoothing factor during the training performance, is eliminated from the original COMBINE-GRNNM-GA (Type-1). And, the modified COMBINE-GRNNM-GA(Type-1) is retrained to find the new and lowest smoothing factor of the each climatic variable. The input variable which has the lowest smoothing factor, implies the least useful climatic variable for the model output. Furthermore, The sensitive and insensitive climatic variables are chosen from the uncertainty analysis of the input nodes. The optimal COMBINE-GRNNM-GA(Type-1) is developed to estimate and calculate the PE which is missed or ungaged and the $ET_r$ which is not measured with the least cost and endeavor Finally, the PE and $ET_r$. maps can be constructed to give the reference data for drought and irrigation and drainage networks system analysis using the optimal COMBINE-GRNNM-GA(Type-1) in South Korea.

GOCI-IIVisible Radiometric Calibration Using Solar Radiance Observations and Sensor Stability Analysis (GOCI-II 태양광 보정시스템을 활용한 가시 채널 복사 보정 개선 및 센서 안정성 분석)

  • Minsang Kim;Myung-Sook Park;Jae-Hyun Ahn;Gm-Sil Kang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1541-1551
    • /
    • 2023
  • Radiometric calibration is a fundamental step in ocean color remote sensing since the step to derive solar radiance spectrum in visible to near-infrared wavelengths from the sensor-observed electromagnetic signals. Generally, satellite sensor suffers from degradation over the mission period, which results in biases/uncertainties in radiometric calibration and the final ocean products such as water-leaving radiance, chlorophyll-a concentration, and colored dissolved organic matter. Therefore, the importance of radiometric calibration for the continuity of ocean color satellites has been emphasized internationally. This study introduces an approach to improve the radiometric calibration algorithm for the visible bands of the Geostationary Ocean Color Imager-II (GOCI-II) satellite with a focus on stability. Solar Diffuser (SD) measurements were employed as an on-orbit radiometric calibration reference, to obtain the continuous monitoring of absolute gain values. Time series analysis of GOCI-II absolute gains revealed seasonal variations depending on the azimuth angle, as well as long-term trends by possible sensor degradation effects. To resolve the complexities in gain variability, an azimuth angle correction model was developed to eliminate seasonal periodicity, and a sensor degradation correction model was applied to estimate nonlinear trends in the absolute gain parameters. The results demonstrate the effects of the azimuth angle correction and sensor degradation correction model on the spectrum of Top of Atmosphere (TOA) radiance, confirming the capability for improving the long-term stability of GOCI-II data.

A Study on Retrieval of Storage Heat Flux in Urban Area (우리나라 도심지에서의 저장열 산출에 관한 연구)

  • Lee, Darae;Kim, Honghee;Lee, Sang-Hyun;Lee, Doo-Il;Hong, Jinkyu;Hong, Je-Woo;Lee, Keunmin;Lee, Kyeong-sang;Seo, Minji;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.301-306
    • /
    • 2018
  • Urbanization causes urban floods and urban heat island in the summer, so it is necessary to understanding the changes of the thermal environment through urban climate and energy balance. This can be explained by the energy balance, but in urban areas, unlike the typical energy balance, the storage heat flux saved in the building or artificial land cover should be considered. Since the environment of each city is different, there is a difficulty in applying the method of retrieving the storage heat flux of the previous research. Especially, most of the previous studies are focused on the overseas cities, so it is necessary to study the storage heat retrieval suitable for various land cover and building characteristics of the urban areas in Korea. Therefore, the object of this study, it is to derive the regression formula which can quantitatively retrieve the storage heat using the data of the area where various surface types exist. To this end, nonlinear regression analysis was performed using net radiation and surface temperature data as independent variables and flux tower based storage heat estimates as dependent variables. The retrieved regression coefficients were applied to each independent variable to derive the storage heat retrieval regression formula. As a result of time series analysis with flux tower based storage heat estimates, it was well simulated high peak at day time and the value at night. Moreover storage heat retrieved in this study was possible continuous retrieval than flux tower based storage heat estimates. As a result of scatter plot analysis, accuracy of retrieved storage heat was found to be significant at $50.14Wm^{-2}$ and bias $-0.94Wm^{-2}$.