• 제목/요약/키워드: nonlinear time history analyses

검색결과 211건 처리시간 0.019초

Seismic performance evaluation of a three-dimensional unsymmetrical reinforced concrete building

  • Lim, Hyun-Kyu;Kang, Jun Won;Lee, Young-Geun;Chi, Ho-Seok
    • Multiscale and Multiphysics Mechanics
    • /
    • 제1권2호
    • /
    • pp.143-156
    • /
    • 2016
  • Reinforced concrete (RC) structures require advanced analysis techniques for better estimation of their seismic responses, especially in the case of exhibiting complex three-dimensional coupling of torsional and flexural behaviors. This study focuses on validating a numerical approach for evaluating the seismic response of a three-dimensional unsymmetrical RC structure through the participation in the SMART 2013 international benchmark program. The benchmark program provides material properties, detailed drawings of the RC structure, and input ground motions for the seismic response evaluation. In this study, nonlinear constitutive models of concrete and rebar were formed and local tests were conducted to verify the constitutive models in finite element analysis. Elastic calibration of the finite element model of the SMART 2013 RC structure was performed by comparing numerical and experimental results in modal and linear time history analyses. Using the calibrated model, nonlinear earthquake analysis and seismic fragility analysis were performed to estimate the behavior and vulnerability of the RC structure with various ground motions.

Study on seismic retrofit of structures using SPSW systems and LYP steel material

  • Zirakian, Tadeh;Zhang, Jian
    • Earthquakes and Structures
    • /
    • 제10권1호
    • /
    • pp.1-23
    • /
    • 2016
  • Steel plate shear walls (SPSWs) have been shown to be efficient lateral force-resisting systems, which are increasingly used in new and retrofit construction. These structural systems are designed with either stiffened and stocky or unstiffened and slender web plates based on disparate structural and economical considerations. Based on some limited reported studies, on the other hand, employment of low yield point (LYP) steel infill plates with extremely low yield strength, and high ductility as well as elongation properties is found to facilitate the design and improve the structural behavior and seismic performance of the SPSW systems. On this basis, this paper reports system-level investigations on the seismic response assessment of multi-story SPSW frames under the action of earthquake ground motions. The effectiveness of the strip model in representing the behaviors of SPSWs with different buckling and yielding properties is primarily verified. Subsequently, the structural and seismic performances of several code-designed and retrofitted SPSW frames with conventional and LYP steel infill plates are investigated through detailed modal and nonlinear time-history analyses. Evaluation of various seismic response parameters including drift, acceleration, base shear and moment, column axial load, and web-plate ductility demands, demonstrates the capabilities of SPSW systems in improving the seismic performance of structures and reveals various advantages of use of LYP steel material in seismic design and retrofit of SPSW systems, in particular, application of LYP steel infill plates of double thickness in seismic retrofit of conventional steel and code-designed SPSW frames.

Statistical evaluation of drift demands of rc frames using code-compatible real ground motion record sets

  • Kayhan, Ali Haydar;Demira, Ahmet
    • Structural Engineering and Mechanics
    • /
    • 제60권6호
    • /
    • pp.953-977
    • /
    • 2016
  • Modern performance-based design methods require ways to determine the factual behavior of structures subjected to earthquakes. Drift ratio demands are important measures of structural and/or nonstructural damage of the structures in performance-based design. In this study, global drift ratio and interstory drift ratio demands, obtained by nonlinear time history analysis of three generic RC frames using code-compatible ground motion record sets, are statistically evaluated. Several ground motion record sets compatible with elastic design spectra defined for the local soil classes in Turkish Earthquake Code are used for the analyses. Variation of the drift ratio demands obtained from ground motion records in the sets and difference between the mean of drift ratio demands calculated for ground motion sets are evaluated. The results of the study indicate that i) variation of maximum drift ratio demands in the sets were high; ii) different drift ratio demands are calculated using different ground motion record sets although they are compatible with the same design spectra; iii) the effect of variability due to random causes on the total variability of drift ratio demands is much larger than the effect of variability due to differences between the mean of ground motion record sets; iv) global and interstory drift ratio demands obtained for different ground motion record sets can be accepted as simply random samples of the same population at %95 confidence level. The results are valid for all the generic frames and local soil classes considered in this study.

Multi-material core as self-centering mechanism for buildings incorporating BRBs

  • Hoveidae, Nader
    • Earthquakes and Structures
    • /
    • 제16권5호
    • /
    • pp.589-599
    • /
    • 2019
  • Conventional buckling restrained braces used in concentrically braced frames are expected to yield in both tension and compression without major degradation of capacity under severe seismic ground motions. One of the weakness points of a standard buckling restrained braced frame is the low post-yield stiffness and thus large residual deformation under moderate to severe ground motions. This phenomenon can be attributed to low post-yield stiffness of core member in a BRB. This paper introduces a multi-core buckling restrained brace. The multi-core term arises from the use of more than one core component with different steel materials, including high-performance steel (HPS-70W) and stainless steel (304L) with high strain hardening properties. Nonlinear dynamic time history analyses were conducted on variety of diagonally braced frames with different heights, in order to compare the seismic performance of regular and multi-core buckling restrained braced frames. The results exhibited that the proposed multi-core buckling restrained braces reduce inter-story and especially residual drift demands in BRBFs. In addition, the results of seismic fragility analysis designated that the probability of exceedance of residual drifts in multi-core buckling restrained braced frames is significantly lower in comparison to standard BRBFs.

Optimization sensor placement of marine platforms using modified ECOMAC approach

  • Vosoughifar, Hamidreza;Yaghoubi, Ali;Khorani, Milad;Biranvand, Pooya;Hosseininejad, Seyedehzeinab
    • Earthquakes and Structures
    • /
    • 제21권6호
    • /
    • pp.587-599
    • /
    • 2021
  • The modified-ECOMAC approach to monitor and investigate health of structure in marine platforms was evaluated in this research. The material properties of structure were defined based on the real platform located in Persian Gulf. The nonlinear time-history analyses were undertaken using the marine natural waves. The modified-ECOMAC approach was designed to act as the solution of the best sensor placement according to structural dynamic behavior of structure. This novel method uses nonlinear time-history analysis results as an exact seismic response despite the common COMAC algorithms utilize the eigenvalue responses. The processes of modified-ECOMAC criteria were designed and developed by author of this paper as a toolbox of Matlab. The Results show that utilizing an efficient ECOMAC method in SHM process leads to detecting the critical weak points of sensitive marine platforms to make better decision about them. The statistical results indicate that considering modified ECOMAC based on seismic waves analysis has an acceptable accuracy on identify the sensor location. The average of statistical comparison of COMAC and ECOMAC via modal and integrated analysis, had a high MAE of 0.052 and RSME of 0.057 and small R2 of 0.504, so there is significant difference between them.

Analytical model of isolated bridges considering soil-pile-structure interaction for moderate earthquakes

  • Mohammad Shamsi;Ehsan Moshtagh;Amir H. Vakili
    • Geomechanics and Engineering
    • /
    • 제34권5호
    • /
    • pp.529-545
    • /
    • 2023
  • The coupled soil-pile-structure seismic response is recently in the spotlight of researchers because of its extensive applications in the different fields of engineering such as bridges, offshore platforms, wind turbines, and buildings. In this paper, a simple analytical model is developed to evaluate the dynamic performance of seismically isolated bridges considering triple interactions of soil, piles, and bridges simultaneously. Novel expressions are proposed to present the dynamic behavior of pile groups in inhomogeneous soils with various shear modulus along with depth. Both cohesive and cohesionless soil deposits can be simulated by this analytical model with a generalized function of varied shear modulus along the soil depth belonging to an inhomogeneous stratum. The methodology is discussed in detail and validated by rigorous dynamic solution of 3D continuum modeling, and time history analysis of centrifuge tests. The proposed analytical model accuracy is guaranteed by the acceptable agreement between the experimental/numerical and analytical results. A comparison of the proposed linear model results with nonlinear centrifuge tests showed that during moderate (frequent) earthquakes the relative differences in responses of the superstructure and the pile cap can be ignored. However, during strong excitations, the response calculated in the linear time history analysis is always lower than the real conditions with the nonlinear behavior of the soil-pile-bridge system. The current simple and efficient method provides the accuracy and the least computational costs in comparison to the full three-dimensional analyses.

Component fragility assessment of a long, curved multi-frame bridge: Uniform excitation versus spatially correlated ground motions

  • Jeon, Jong-Su;Shafieezadeh, Abdollah;DesRoches, Reginald
    • Structural Engineering and Mechanics
    • /
    • 제65권5호
    • /
    • pp.633-644
    • /
    • 2018
  • This paper presents the results of an assessment of the seismic fragility of a long, curved multi-frame bridge under multi-support earthquake excitations. To achieve this aim, the numerical model of columns retrofitted with elliptical steel jackets was developed and validated using existing experimental results. A detailed nonlinear numerical model of the bridge that can capture the inelastic response of various components was then created. Using nonlinear time-history analyses for a set of stochastically generated spatially variable ground motions, component demands were derived and then convolved with new capacity-based limit state models to obtain seismic fragility curves. The comparison of failure probabilities obtained from uniform and multi-support excitation analyses revealed that the consideration of spatial variability significantly reduced the median value of fragility curves for most components except for the abutments. This observation indicates that the assumption of uniform motions may considerably underestimate seismic demands. Moreover, the spatial correlation of ground motions resulted in reduced dispersion of demand models that consequently decreased the dispersion of fragility curves for all components. Therefore, the spatial variability of ground motions needs to be considered for reliable assessment of the seismic performance of long multi-frame bridge structures.

Seismic performance of eccentrically braced frames with high strength steel combination

  • Lian, Ming;Su, Mingzhou;Guo, Yan
    • Steel and Composite Structures
    • /
    • 제18권6호
    • /
    • pp.1517-1539
    • /
    • 2015
  • Eccentrically braced frames (EBFs) often use conventional steel with medium yield strength. This system requires structural members with large cross-sections for well seismic behavior, which leads to increased material costs. In eccentrically braced frames with high strength steel combination (HSS-EBFs), links use Q345 steel (specified nominal yield strength 345 MPa), braces use Q345 steel or high strength steel while other structural members use high strength steel (e.g., steel Q460 with the nominal yield strength of 460 MPa or steel Q690 with the nominal yield strength of 690 MPa). For this approach can result in reduced steel consumption and increased economic efficiency. Several finite element models of both HSS-EBFs and EBFs are established in this paper. Nonlinear hysteretic analyses and nonlinear time history analyses are conducted to compare seismic performance and economy of HSS-EBFs versus EBFs. Results indicate that the seismic performance of HSS-EBFs is slightly poorer than that of EBFs under the same design conditions, and HSS-EBFs satisfy seismic design codes and reduce material costs.

Development of a nonlinear seismic response capacity spectrum method for intake towers of dams

  • Cocco, Leonardo;Suarez, Luis E.;Matheu, Enrique E.
    • Structural Engineering and Mechanics
    • /
    • 제36권3호
    • /
    • pp.321-341
    • /
    • 2010
  • The seismic-induced failure of a dam could have catastrophic consequences associated with the sudden release of the impounded reservoir. Depending on the severity of the seismic hazard, the characteristics and size of the dam-reservoir system, preventing such a failure scenario could be a problem of critical importance. In many cases, the release of water is controlled through a reinforced-concrete intake tower. This paper describes the application of a static nonlinear procedure known as the Capacity Spectrum Method (CSM) to evaluate the structural integrity of intake towers subject to seismic ground motion. Three variants of the CSM are considered: a multimodal pushover scheme, which uses the idea proposed by Chopra and Goel (2002); an adaptive pushover variant, in which the change in the stiffness of the structure is considered; and a combination of both approaches. The effects caused by the water surrounding the intake tower, as well as any water contained inside the hollow structure, are accounted for by added hydrodynamic masses. A typical structure is used as a case study, and the accuracy of the CSM analyses is assessed with time history analyses performed using commercial and structural analysis programs developed in Matlab.

2016년 경주지진에 의한 국내 도시철도 교량의 잠재적 손상평가 (Damage Potential of a Domestic Metropolitan Railway Bridge subjected to 2016 Gyeongju Earthquake)

  • 이도형;심재엽;전종수
    • 한국지진공학회논문집
    • /
    • 제20권7_spc호
    • /
    • pp.461-472
    • /
    • 2016
  • Damage potential has been investigated for a domestic metropolitan railway bridge subjected to 2016 Gyeongju earthquake which has been reported as the strongest earthquake in Korea. For this purpose, nonlinear static pushover analyses for the bridge piers have been carried out to evaluate ductility capacities. Then, the capacities have been compared with those suggested by Railway Design Standards of Korea. This comparison shows that all piers possess enough safety margins. Nonlinear dynamic time-history analysis has also been conducted to estimate both displacement and shear force demands for the bridge subjected to ground motions recorded at stations in near of Gyeongju. Maximum demands reveal that response under the ground motions remains essentially in elastic. In addition, for a further assessment of the bridge under the Gyeongju earthquake, fragility analyses have been performed using those ground motions. The fragility results indicate that the recorded earthquakes do not significantly affect the damage exceedance probability of the bridge piers.