• 제목/요약/키워드: nonlinear time history analyses

검색결과 212건 처리시간 0.016초

해양플랜트 Topside 방화벽에 폭발압의 부압구간이 미치는 영향 (The Effect of Negative Pressure Phase in Blast Load Profile on Blast Wall of Offshore Plant Topside)

  • 강기엽;최광호;류용희;최재웅;이제명
    • 한국전산구조공학회논문집
    • /
    • 제27권4호
    • /
    • pp.281-288
    • /
    • 2014
  • 가스폭발은 해양플랜트 산업에서 발생할 수 있는 치명적인 사고 중 하나이며, 탑사이드 플랫폼은 폭발압력에 따른 구조 건전성을 확보해야만 한다. 따라서, 해양플랜트 분야에서는 이러한 폭발사고에 대비한 방폭설계에 관한 많은 연구가 수행되었지만, 여전히 추가적으로 세밀한 분석이 더 필요한 실정이다. 폭발 설계하중 계산과정에서 도출된 충격량은 CFD 해석결과로 계측된 폭발 압력 응답에서의 곡선 아래 면적의 절대 값에 의해 결정되어 진다. 하지만 가스폭발에서의 부압구간은 TNT 폭발이나 가스폭발과는 달리 상당부분 존재한다. 본 연구의 목표는 이러한 부압구간이 구조물의 거동에 미치는 영향에 대해서 분석하는 것이다. 따라서 방폭설계가 필수적으로 요구되어지는 FPSO 탑사이드의 방화벽을 폭발하중에 따른 구조 응답을 분석하기 위한 대상물로 선정하였다. 폭발 하중-시간이력 데이터는 FLACS를 이용한 폭발 시뮬레이션 과정을 통해 획득하였으며, LS-DYNA는 비선형 과도 응답해석을 위해 사용되었다.

Seismic investigation of cyclic pushover method for regular reinforced concrete bridge

  • Shafigh, Afshin;Ahmadi, Hamid Reza;Bayat, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • 제78권1호
    • /
    • pp.41-52
    • /
    • 2021
  • Inelastic static pushover analysis has been used in the academic-research widely for seismic analysis of structures. Nowadays, the variety pushover analysis methods have been developed, including Modal pushover, Adaptive pushover, and Cyclic pushover, in which some weaknesses of the conventional pushover method have been rectified. In the conventional pushover analysis method, the effects of cumulative growth of cracks are not considered on the reduction of strength and stiffness of RC members that occur during earthquake or cyclic loading. Therefore, the Cyclic Pushover Analysis Method (CPA) has been proposed. This method is a powerful technique for seismic evaluation of regular reinforced concrete buildings in which the first mode of them is dominant. Since the bridges have different structures than buildings, their results cannot necessarily be attributed to bridges, and more research is needed. In this study, a cyclic pushover analysis with four loading protocols (suggested by valid references) by the Opensees software was conducted for seismic evaluation of two regular reinforce concrete bridges. The modeling method was validated with the comparison of the analytical and experimental results under both cyclic and dynamic loading. The failure mode of the piers was considered in two-mode of flexural failure and also a flexural-shear failure. Along with the cyclic analysis, conventional analysis has been studied. Also, the nonlinear incremental dynamic analysis (IDA) method has been used to examine and compare the results of pushover analyses. The time history of 20 far-field earthquake records was used to conduct IDA. After analysis, the base shear vs. displacement in the middle of the deck was drawn. The obtained results show that the cyclic pushover analysis method is able to evaluate an accurate seismic behavior of the reinforced concrete piers of the bridges. Based on the results, the cyclic pushover has proper convergence with IDA. Its accuracy was much higher than the conventional pushover, in which the bridge piers failed in flexural-shear mode. But, in the flexural failure mode, the results of each two pushover methods were close approximately. Besides, the cyclic pushover method with ACI loading protocol, and ATC-24 loading protocol, can provided more accurate results for evaluating the seismic investigation of the bridges, specially if the bridge piers are failed in flexural-shear failure mode.