• Title/Summary/Keyword: nonlinear systems control

Search Result 2,442, Processing Time 0.031 seconds

Dynamic analysis of magnetorheological elastomer sandwich MEMS sensor under magnetic field

  • Akhavan, Hossein;Ehyaei, Javad;Ghadiri, Majid
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.705-714
    • /
    • 2022
  • In this paper, the effect of magnetic field on the vibration behavior of a Magnetorheological elastomer (MRE) sandwich MEMS actuated by electrostatic actuation with conductive skins are examined within the multiple scales (MMS) perturbation method. Magnetorheological smart materials have been widely used in vibration control of various systems due to their mechanical properties change under the influence of different magnetic fields. To investigate the vibrational behavior of the movable electrode, the Euler-Bernoulli beam theory, as well as Hamilton's principle is used to derive the equations and the related boundary conditions governing the dynamic behavior of the system are applied. The results of this study show that by placing the Magnetorheological elastomer core in the movable electrode and applying different magnetic fields on it, its natural vibrational frequency can be affected so that by increasing the applied magnetic field, the system's natural frequency increases. Also, the effect of various factors such as the electric potential difference between two electrodes, changes in the thickness of the core and the skins, electrode length, the distance between two electrodes and also change in vibration modes of the system on natural frequencies have been investigated.

Linear Quadratic Controller Design of Insect-Mimicking Flapping Micro Aerial Vehicle (곤충모방 날갯짓 비행체의 LQ 제어기 설계)

  • Kim, Sungkeun;Kim, Inrae;Kim, Seungkeun;Suk, Jinyoung
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.5
    • /
    • pp.450-458
    • /
    • 2017
  • This paper presents dynamic modelling and simulation study on attitude/altitude control of an insect-mimicking flapping micro aerial vehicle during hovering. Mathematical modelling consists of three parts: simplified flapping kinematics, flapping-wing aerodynamics, and six degree of freedom dynamics. Attitude stabilization is accomplished through linear quadratic regulator based on the linearized model of the time-varying nonlinear system, and altitude control is designed in the outer loop using PID control. The performance of the proposed controller is verified through numerical simulation where attitude stabilization and altitude control is done for hovering. In addition, it is confirmed that the attitude channel by periodic control is marginally stable against periodic pitching moment caused by flapping.

The injection petrol control system about CMAC neural networks (CMAC 신경회로망을 이용한 가솔린 분사 제어 시스템에 관한 연구)

  • Han, Ya-Jun;Tack, Han-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.395-400
    • /
    • 2017
  • The paper discussed the air-to-fuel ratio control of automotive fuel-injection systems using the cerebellar model articulation controller(CMAC) neural network. Because of the internal combustion engines and fuel-injection's dynamics is extremely nonlinear, it leads to the discontinuous of the fuel-injection and the traditional method of control based on table look up has the question of control accuracy low. The advantages about CMAC neural network are distributed storage information, parallel processing information, self-organizing and self-educated function. The unique structure of CMAC neural network and the processing method lets it have extensive application. In addition, by analyzing the output characteristics of oxygen sensor, calculating the rate of fuel-injection to maintain the air-to-fuel ratio. The CMAC may easily compensate for time delay. Experimental results proved that the way is more good than traditional for petrol control and the CMAC fuel-injection controller can keep ideal mixing ratio (A/F) for engine at any working conditions. The performance of power and economy is evidently improved.

Soft Sensor Development for Predicting the Relative Humidity of a Membrane Humidifier for PEM Fuel Cells (고분자 전해질 연료전지용 막가습기의 상대습도 추정을 위한 소프트센서 개발)

  • Han, In Su;Shin, Hyun Khil
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.5
    • /
    • pp.491-499
    • /
    • 2014
  • It is important to accurately measure and control the relative humidity of humidified gas entering a PEM (polymer electrolyte membrane) fuel cell stack because the level of humidification strongly affects the performance and durability of the stack. Humidity measurement devices can be used to directly measure the relative humidity, but they cost much to be equipped and occupy spaces in a fuel cell system. We present soft sensors for predicting the relative humidity without actual humidity measuring devices. By combining FIR (finite impulse response) model with PLS (partial least square) and SVM (support vector machine) regression models, DPLS (dynamic PLS) and DSVM (dynamic SVM) soft sensors were developed to correctly estimate the relative humidity of humidified gases exiting a planar-type membrane humidifier. The DSVM soft sensor showed a better prediction performance than the DPLS one because it is able to capture nonlinear correlations between the relative humidity and the input data of the soft sensors. Without actual humidity sensors, the soft sensors presented in this work can be used to monitor and control the humidity in operation of PEM fuel cell systems.

Dextrous sensor hand for the intelligent assisting system - IAS

  • Hashimoto, Hideki;Buss, Martin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.124-129
    • /
    • 1992
  • The goal of the proposed Intelligent Assisting System - IAS is to assist human operators in an intelligent way, while leaving decision and goal planning instances for the human. To realize the IAS the very important issue of manipulation skill identification and analysis has to be solved, which then is stored in a Skill Data Base. Using this data base the IAS is able to perform complex manipulations on the motion control level and to assist the human operator flexibly. We propose a model for manipulation skill based on the dynamics of the grip transformation matrix, which describes the dynamic transformation between object space and finger joint space. Interaction with a virtual world simulator allows the calculation and feedback of appropriate forces through controlled actuators of the sensor glove with 10 degrees-of-freedom. To solve the sensor glove calibration problem, we learn the nonlinear calibration mapping by an artificial neural network(ANN). In this paper we also describe the experimental system setup of the skill acquisition and transfer system as a first approach to the IAS. Some simple manipulation examples and simulation results show the feasibility of the proposed manipulation skill model.

  • PDF

Development of Multiple Slim Type Damper System and Performance Test (다중 슬림형 감쇠장치의 개발 및 성능 실험)

  • Sung, E.H.;Kim, D.;Park, D.H.;Park, K.S.;Park, J.H.;Cho, H.J.
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.2
    • /
    • pp.31-37
    • /
    • 2014
  • For the vibration control of residential buildings, a multiple type slim damper system is developed and dynamic performance test is performed in this study. In conventional damping systems, larger installation space is required in order to achieve acceptable seismic performance, and as a result, it is difficult to determine efficient damping capacity of the device. The proposed damping device is composed of several small slim type dampers and linkage units. It can control damping capacity easily by changing the number of the small damper. To evaluate the proposed damping device, three slim type dampers (single-type, triple-type and penta-type) are designed and manufactured in real scale. Dynamic loading tests are performed by using the three manufactured dampers. From the tests, it is shown that damping coefficient is proportional to the number of the damper combined. Thus, test results validates the practicality of the proposed slim type dampers. applying nonlinear curve fitting technique, numerical model of the dampers are developed and presented.

Development of a Dynamic Track Tensioning System in Tracked Vehicles (궤도차량의 동적 궤도장력 조절시스템 개발)

  • Seo, Mun-Seok;Heo, Geon-Su;Hong, Dae-Geon;Lee, Chun-Ho;Choe, Pil-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1678-1683
    • /
    • 2001
  • The mobility of tracked vehicles is mainly influenced by the interaction between tracks and soil, so that the characteristics of their interactions are quite important fur the tracked vehicle study. In particular, the track tension is closely related to the maneuverability of tracked vehicles and the durability of tracks and suspension systems. In order to minimize the excessive load on the tracks and to prevent the peal-off of tracks from the road-wheels, the Dynamic Track Tensioning System (DTTS) which maintains the optimum track tension throughout the maneuver is required. It consists of track tension monitoring system, track tension controller and hydraulic system. In this paper, a dynamic track tensioning system is developed for tracked vehicles which are subject to various maneuvering tasks. The track tension is estimated based on the idler assembly model. Using the monitored track tension and con sidering the highly nonlinear hydraulic units, fuzzy logic controllers are designed in order to control the track tension. The track tensioning performance of the proposed DTTS is verified through the simulation of the Multi -body Dynamics tool.

Study on Seismic Performance of Steel Structure with Precast Concrete Cladding Panel and Connector Considered as Structural Components (외부벽판과 연결부재를 구조요소로 취급한 경우 철골구조물의 내진성능에 관한 연구)

  • Byeon, Ji-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.2
    • /
    • pp.127-133
    • /
    • 2008
  • The purpose of this study is to investigate the seismic performance of both exterior precast concrete cladding panels and their connections on steel frame, when these cladding systems are considered as the structural components. The degrees of their participation of lateral stiffness to the main building are evaluated in terms of different heights of the cladding panels. Considering the cladding system as an integrated building provides additional lateral stiffness, as well as a mechanism for energy dissipation and this system can be used as one of an advanced passive seismic control system. Hysteresis behaviors of connectors are modeled and integrated into a nonlinear finite element analysis program, ABAQUS. The results show that connections play the most important role in structural cladding system and they improve seismic performance of overall building response.

Multiobjective Optimal Reactive Power Flow Using Elitist Nondominated Sorting Genetic Algorithm: Comparison and Improvement

  • Li, Zhihuan;Li, Yinhong;Duan, Xianzhong
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.70-78
    • /
    • 2010
  • Elitist nondominated sorting genetic algorithm (NSGA-II) is adopted and improved for multiobjective optimal reactive power flow (ORPF) problem. Multiobjective ORPF, formulated as a multiobjective mixed integer nonlinear optimization problem, minimizes real power loss and improves voltage profile of power grid by determining reactive power control variables. NSGA-II-based ORPF is tested on standard IEEE 30-bus test system and compared with four other state-of-the-art multiobjective evolutionary algorithms (MOEAs). Pareto front and outer solutions achieved by the five MOEAs are analyzed and compared. NSGA-II obtains the best control strategy for ORPF, but it suffers from the lower convergence speed at the early stage of the optimization. Several problem-specific local search strategies (LSSs) are incorporated into NSGA-II to promote algorithm's exploiting capability and then to speed up its convergence. This enhanced version of NSGA-II (ENSGA) is examined on IEEE 30 system. Experimental results show that the use of LSSs clearly improved the performance of NSGA-II. ENSGA shows the best search efficiency and is proved to be one of the efficient potential candidates in solving reactive power optimization in the real-time operation systems.

ORBITAL CONTRACTION IN METRIC SPACES WITH APPLICATIONS OF FRACTIONAL DERIVATIVES

  • Haitham Qawaqneh;Waseem G. Alshanti;Mamon Abu Hammad;Roshdi Khalil
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.3
    • /
    • pp.649-672
    • /
    • 2024
  • This paper explores the significance and implications of fixed point results related to orbital contraction as a novel form of contraction in various fields. Theoretical developments and theorems provide a solid foundation for understanding and utilizing the properties of orbital contraction, showcasing its efficacy through numerous examples and establishing stability and convergence properties. The application of orbital contraction in control systems proves valuable in designing resilient and robust control strategies, ensuring reliable performance even in the presence of disturbances and uncertainties. In the realm of financial modeling, the application of fixed point results offers valuable insights into market dynamics, enabling accurate price predictions and facilitating informed investment decisions. The practical implications of fixed point results related to orbital contraction are substantiated through empirical evidence, numerical simulations, and real-world data analysis. The ability to identify and leverage fixed points grants stability, convergence, and optimal system performance across diverse applications.