• Title/Summary/Keyword: nonlinear systems control

Search Result 2,436, Processing Time 0.032 seconds

Fault Classification of a Blade Pitch System in a Floating Wind Turbine Based on a Recurrent Neural Network

  • Cho, Seongpil;Park, Jongseo;Choi, Minjoo
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.287-295
    • /
    • 2021
  • This paper describes a recurrent neural network (RNN) for the fault classification of a blade pitch system of a spar-type floating wind turbine. An artificial neural network (ANN) can effectively recognize multiple faults of a system and build a training model with training data for decision-making. The ANN comprises an encoder and a decoder. The encoder uses a gated recurrent unit, which is a recurrent neural network, for dimensionality reduction of the input data. The decoder uses a multilayer perceptron (MLP) for diagnosis decision-making. To create data, we use a wind turbine simulator that enables fully coupled nonlinear time-domain numerical simulations of offshore wind turbines considering six fault types including biases and fixed outputs in pitch sensors and excessive friction, slit lock, incorrect voltage, and short circuits in actuators. The input data are time-series data collected by two sensors and two control inputs under the condition that of one fault of the six types occurs. A gated recurrent unit (GRU) that is one of the RNNs classifies the suggested faults of the blade pitch system. The performance of fault classification based on the gate recurrent unit is evaluated by a test procedure, and the results indicate that the proposed scheme works effectively. The proposed ANN shows a 1.4% improvement in its performance compared to an MLP-based approach.

Analytical study on cable shape and its lateral and vertical sags for earth-anchored suspension bridges with spatial cables

  • Gen-min Tian;Wen-ming Zhang;Jia-qi Chang;Zhao Liu
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.255-272
    • /
    • 2023
  • Spatial cable systems can provide more transverse stiffness and torsional stiffness without sacrificing the vertical bearing capacity compared with conventional vertical cable systems, which is quite lucrative for long-span earth-anchored suspension bridges' development. Higher economy highlights the importance of refined form-finding analysis. Meanwhile, the internal connection between the lateral and vertical sags has not yet been specified. Given this, an analytic algorithm of form-finding for the earth-anchored suspension bridge with spatial cables is proposed in this paper. Through the geometric compatibility condition and mechanical equilibrium condition, the expressions for cable segment, the recurrence relationship between catenary parameters and control equations of spatial cable are established. Additionally, the nonlinear general reduced gradient method is introduced into fast and high-precision numerical analysis. Furthermore, the analytic expression of the lateral and vertical sags is deduced and discussed. This is very significant for the space design above the bridge deck and the optimization of the sag-to-span ratio in the preliminary design stage of the bridge. Finally, the proposed method is verified with the aid of two examples, one being an operational self-anchored suspension bridge (with spatial cables and a 260 m main span), and the other being an earth-anchored suspension bridge under design (with spatial cables and a 500 m main span). The necessity of an iterative calculation for hanger tensions on earth-anchored suspension bridges is confirmed. It is further concluded that the main cable and their connected hangers are in very close inclined planes.

Enhanced image detail control using Multi Channel Unsharp Mask Technique (멀티채널 언샤프 마스크 기법을 이용한 영상 세부제어)

  • Cho, Hyun-Ji;Nam, Doohee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.165-170
    • /
    • 2015
  • The unsharp mask technique emphasize the boundary of the image by adding the boundary of the original image. This technique improves quality by emphasize its boundaries but produce rough image from image noise. The multi channel unsharp mask is possible to enhance entire contrast of the image by applying at least two channels of unsharp mask. However, There is limitations to strengthen boundaries even if the scale strongly applies the multi channel unsharp mask technique. To solve this problem, linear scaling to nonlinear scaling by applying exponential function to existing multi channel unsharp mask technique. Experimental results show enhanced contrast for desired area because of control scaling in details compared with existing unsharp mask technique.

Dynamic Characteristic Analysis and LMI-based H_ Controller Design for a Line of Sight Stabilization System

  • Lee, Won-Gu;Kim, In-Soo;Keh, Joong-Eup;Lee, Man-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1187-1200
    • /
    • 2002
  • This paper is concerned with the design or an LMI (Linear Matrix Inequality) -based H$\infty$ controller for a line of sight (LOS) stabilization system and with its robustness performance. The linearization of the system is necessary to analyze various nonlinear characteristics, but the linearization entails modeling uncertainties which reduce its performance. In addition, the stability of the LOS can be adversely affected by angular velocity disturbances while the vehicle is moving. As the vehicle accelerates, all the factors that are Ignored and simplified for the linearization tend to Inhibit the performance of the system. The robustness in the face of these uncertainties needs to be assured. This paper employs H$\infty$ control theory to address these problems and the LMI method to provide a suitable controller with minimal constraints for the system. Even though the system matrix does not have a full rank, the proposed method makes it possible to design a H$\infty$ controller and to deal with R and S matrices for reducing the system order. It can be also shown that the proposed robust controller has a better disturbance attenuation and tracking performance. The LMI method is also used to enhance the applicability of the proposed reduced-order H$\infty$ controller for the system given. The LMI-based H$\infty$ controller has superior disturbance attenuation and reference input tracking performance, compared with that of the conventional controller under real disturbances.

Modeling, Simulation, and Control of a Polyaniline/Carbon-Nanotube Polymer Actuator (폴리아닐린/탄소나노튜브 폴리머 액츄에이터의 모델링, 시뮬레이션 및 제어)

  • Sohn, Ki-Won;Yi, Byung-Ju;Kim, Sean-Jeong;Kim, In-Young;Kim, Sun-I.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.348-354
    • /
    • 2007
  • Polymer actuators, which are also called as smart materials, change their shapes when electrical, chemical, thermal, or magnetic energy is applied to them and are useful in wide variety of applications such as microelectromechanical systems (MEMS), machine components, and artificial muscles. For this study, Polyaniline/carbon-nanotube polymer actuator that is one of electroactive polymer actuators was prepared. Since the nonlinear phenomena of hysteresis and a step response are essential considerations for practical use of polymer actuators, we have investigated the movement of the Polyaniline/carbon-nanotube polymer actuator and have developed an integrated model that can be used for simulating and predicting the hysteresis and a step response during actuation. The Preisach hysteresis model, one of the most popular phenomenological models of hysteresis, were used for describing the hysteretic behavior of Polyaniline/carbon-nanotube polymer actuator while the ARX method, one of system identification techniques, were used for modeling a step response. In this paper, we first expain details in preparation of the Polyaniline/carbon-nanotube polymer then present the mathematical description of our model, the extraction of the parameters, simulation results from the model, and finally a comparison with measured data.

Joint wireless and computational resource allocation for ultra-dense mobile-edge computing networks

  • Liu, Junyi;Huang, Hongbing;Zhong, Yijun;He, Jiale;Huang, Tiancong;Xiao, Qian;Jiang, Weiheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.3134-3155
    • /
    • 2020
  • In this paper, we study the joint radio and computational resource allocation in the ultra-dense mobile-edge computing networks. In which, the scenario which including both computation offloading and communication service is discussed. That is, some mobile users ask for computation offloading, while the others ask for communication with the minimum communication rate requirements. We formulate the problem as a joint channel assignment, power control and computational resource allocation to minimize the offloading cost of computing offloading, with the precondition that the transmission rate of communication nodes are satisfied. Since the formulated problem is a mixed-integer nonlinear programming (MINLP), which is NP-hard. By leveraging the particular mathematical structure of the problem, i.e., the computational resource allocation variable is independent with other variables in the objective function and constraints, and then the original problem is decomposed into a computational resource allocation subproblem and a joint channel assignment and power allocation subproblem. Since the former is a convex programming, the KKT (Karush-Kuhn-Tucker) conditions can be used to find the closed optimal solution. For the latter, which is still NP-hard, is further decomposed into two subproblems, i.e., the power allocation and the channel assignment, to optimize alternatively. Finally, two heuristic algorithms are proposed, i.e., the Co-channel Equal Power allocation algorithm (CEP) and the Enhanced CEP (ECEP) algorithm to obtain the suboptimal solutions. Numerical results are presented at last to verify the performance of the proposed algorithms.

Numerical Study of Hybrid Base-isolator with Magnetorheological Damper and Friction Pendulum System (MR 감쇠기와 FPS를 이용한 하이브리드 면진장치의 수치해석적 연구)

  • Kim, Hyun-Su;Roschke, P.N.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.2 s.42
    • /
    • pp.7-15
    • /
    • 2005
  • Numerical analysis model is proposed to predict the dynamic behavior of a single-degree-of-freedom structure that is equipped with hybrid base isolation system. Hybrid base isolation system is composed of friction pendulum systems (FPS) and a magnetorheological (MR) damper. A neuro-fuzzy model is used to represent dynamic behavior of the MR damper. Fuzzy model of the MR damper is trained by ANFIS (Adaptive Neuro-Fuzzy Inference System) using various displacement, velocity, and voltage combinations that are obtained from a series of performance tests. Modelling of the FPS is carried out with a nonlinear analytical equation that is derived in this study and neuro-fuzzy training. Fuzzy logic controller is employed to control the command voltage that is sent to MR damper. The dynamic responses of experimental structure subjected to various earthquake excitations are compared with numerically simulated results using neuro-fuzzy modeling method. Numerical simulation using neuro-fuzzy models of the MR damper and FPS predict response of the hybrid base isolation system very well.

Cryptanalysis of LILI-128 with Overdefined Systems of Equations (과포화(Overdefined) 연립방정식을 이용한 LILI-128 스트림 암호에 대한 분석)

  • 문덕재;홍석희;이상진;임종인;은희천
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.1
    • /
    • pp.139-146
    • /
    • 2003
  • In this paper we demonstrate a cryptanalysis of the stream cipher LILI-128. Our approach to analysis on LILI-128 is to solve an overdefined system of multivariate equations. The LILI-128 keystream generato $r^{[8]}$ is a LFSR-based synchronous stream cipher with 128 bit key. This cipher consists of two parts, “CLOCK CONTROL”, pan and “DATA GENERATION”, part. We focus on the “DATA GENERATION”part. This part uses the function $f_d$. that satisfies the third order of correlation immunity, high nonlinearity and balancedness. But, this function does not have highly nonlinear order(i.e. high degree in its algebraic normal form). We use this property of the function $f_d$. We reduced the problem of recovering the secret key of LILI-128 to the problem of solving a largely overdefined system of multivariate equations of degree K=6. In our best version of the XL-based cryptanalysis we have the parameter D=7. Our fastest cryptanalysis of LILI-128 requires $2^{110.7}$ CPU clocks. This complexity can be achieved using only $2^{26.3}$ keystream bits.

Modeling and Analysis of Cooperative Engagements with Manned-Unmanned Ground Combat Systems (무인 지상 전투 체계의 협동 교전 모델링 및 분석)

  • Han, Sang Woo;Pyun, Jai Jeong
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.2
    • /
    • pp.105-117
    • /
    • 2020
  • Analysis of combat effectiveness is required to consider the concept of tactical cooperative engagement between manned-unmanned weapon systems, in order to predict the required operational capabilities of future weapon systems that meets the concept of 'effect-based synchronized operations.' However, analytical methods such as mathematical and statistical models make it difficult to analyze the effects of complex systems under nonlinear warfare. In this paper, we propose a combat simulation model that can simulate the concept of cooperative engagement between manned-unmanned combat entities based on wireless communications. First, we model unmanned combat entities, e.g., unmanned ground vehicles and drones, and manned combat entities, e.g., combatants and artillery, considering the capabilities required by the future ground system. We also simulate tactical behavior in which all entities perform their mission while sharing battlefield situation information through wireless communications. Finally we explore the feasibility of the proposed model by analyzing combat effectiveness such as target acquisition rate, remote control success rate, reconnaissance lead time, survival rate, and enemy's loss rate under a small-unit armor reconnaissance scenario. The proposed model is expected to be used in war-game combat experiments as well as analysis of the effects of manned-unmanned ground weapons.

Design of Fuzzy PI Controllers for the Temperature Control of Soldering Systems (솔더링 시스템의 온도 제어를 위한 퍼지 PI 제어기 설계)

  • Oh, Kabsuk;Kang, Geuntaek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.325-333
    • /
    • 2016
  • This paper proposes controller design algorithms for a ceramic soldering iron temperature control system, and reports their effectiveness in a control experiment. Because the responses of the ceramic soldering iron temperature to the control input are non-linear and very slow, precise modeling and controller design is difficult. In this study, the temperature characteristics of a ceramic soldering iron are represented by TSK fuzzy models consisting of TSK fuzzy rules. In the fuzzy rules, the premise variable is the control input and the consequences are the transfer functions. The transfer functions in the fuzzy model were obtained from the step input responses. As the responses of the ceramic soldering iron temperature are very slow, it is difficult to obtain the complete step input responses. This paper proposes a genetic algorithm to obtain the transfer functions from an incomplete step input responses, and showed its effectiveness in examples. This paper also reports a fuzzy controller design method from the TSK fuzzy model and examples. The proposed methods were applied to the temperature control experiments of ceramic iron. The TSK fuzzy model consisted of 7 TSK fuzzy rules, and the consequences were PI controllers. The experimental results of the proposed fuzzy PI controller were superior to the linear controller and were as good as in previous studies using a fuzzy PID controller.