• 제목/요약/키워드: nonlinear matrix equations

Search Result 140, Processing Time 0.026 seconds

Whole learning algorithm of the neural network for modeling nonlinear and dynamic behavior of RC members

  • Satoh, Kayo;Yoshikawa, Nobuhiro;Nakano, Yoshiaki;Yang, Won-Jik
    • Structural Engineering and Mechanics
    • /
    • v.12 no.5
    • /
    • pp.527-540
    • /
    • 2001
  • A new sort of learning algorithm named whole learning algorithm is proposed to simulate the nonlinear and dynamic behavior of RC members for the estimation of structural integrity. A mathematical technique to solve the multi-objective optimization problem is applied for the learning of the feedforward neural network, which is formulated so as to minimize the Euclidean norm of the error vector defined as the difference between the outputs and the target values for all the learning data sets. The change of the outputs is approximated in the first-order with respect to the amount of weight modification of the network. The governing equation for weight modification to make the error vector null is constituted with the consideration of the approximated outputs for all the learning data sets. The solution is neatly determined by means of the Moore-Penrose generalized inverse after summarization of the governing equation into the linear simultaneous equations with a rectangular matrix of coefficients. The learning efficiency of the proposed algorithm from the viewpoint of computational cost is verified in three types of problems to learn the truth table for exclusive or, the stress-strain relationship described by the Ramberg-Osgood model and the nonlinear and dynamic behavior of RC members observed under an earthquake.

Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model

  • Rad, Mohammad Hossein Ghadiri;Shahabian, Farzad;Hosseini, Seyed Mahmoud
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.77-92
    • /
    • 2020
  • The present paper outlined a procedure for geometrically nonlinear dynamic analysis of functionally graded graphene platelets-reinforced (GPLR-FG) nanocomposite cylinder subjected to mechanical shock loading. The governing equation of motion for large deformation problems is derived using meshless local Petrov-Galerkin (MLPG) method based on total lagrangian approach. In the MLPG method, the radial point interpolation technique is employed to construct the shape functions. A micromechanical model based on the Halpin-Tsai model and rule of mixture is used for formulation the nonlinear functionally graded distribution of GPLs in polymer matrix of composites. Energy dissipation in analyses of the structure responding to dynamic loads is considered using the Rayleigh damping. The Newmark-Newton/Raphson method which is an incremental-iterative approach is implemented to solve the nonlinear dynamic equations. The results of the proposed method for homogenous material are compared with the finite element ones. A very good agreement is achieved between the MLPG and FEM with very fine meshing. In addition, the results have demonstrated that the MLPG method is more effective method compared with the FEM for very large deformation problems due to avoiding mesh distortion issues. Finally, the effect of GPLs distribution on strength, stiffness and dynamic characteristics of the cylinder are discussed in details. The obtained results show that the distribution of GPLs changed the mechanical properties, so a classification of different types and volume fraction exponent is established. Indeed by comparing the obtained results, the best compromise of nanocomposite cylinder is determined in terms of mechanical and dynamic properties for different load patterns. All these applications have shown that the present MLPG method is very effective for geometrically nonlinear analyses of GPLR-FG nanocomposite cylinder because of vanishing mesh distortion issue in large deformation problems. In addition, since in proposed method the distributed nodes are used for discretization the problem domain (rather than the meshing), modeling the functionally graded media yields to more accurate results.

Optimum time history analysis of SDOF structures using free scale of Haar wavelet

  • Mahdavi, S.H.;Shojaee, S.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.1
    • /
    • pp.95-110
    • /
    • 2013
  • In the recent decade, practical of wavelet technique is being utilized in various domain of science. Particularly, engineers are interested to the wavelet solution method in the time series analysis. Fundamentally, seismic responses of structures against time history loading such as an earthquake, illustrates optimum capability of systems. In this paper, a procedure using particularly discrete Haar wavelet basis functions is introduced, to solve dynamic equation of motion. In the proposed approach, a straightforward formulation in a fluent manner is derived from the approximation of the displacements. For this purpose, Haar operational matrix is derived and applied in the dynamic analysis. It's free-scaled matrix converts differential equation of motion to the algebraic equations. It is shown that accuracy of dynamic responses relies on, access of load in the first step, before piecewise analysis added to the technique of equation solver in the last step for large scale of wavelet. To demonstrate the effectiveness of this scheme, improved formulations are extended to the linear and nonlinear structural dynamic analysis. The validity and effectiveness of the developed method is verified with three examples. The results were compared with those from the numerical methods such as Duhamel integration, Runge-Kutta and Wilson-${\theta}$ method.

A study on the optimization of network resource allocation scheme based on access probabilities (접근확률 기반의 네트워크 자원할당방식의 최적화에 관한 연구)

  • Kim Do-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.8
    • /
    • pp.1393-1400
    • /
    • 2006
  • This paper optimizes the access probabilities (APs) in a network resource allocation scheme based on access probabilities in order that the waiting time and the blocking probability are minimized under the given constraints, and obtains its performance. In order to optimize APs, an infinite number of balance equations is reduced to a finite number of balance equations by applying Neuts matrix geometric method. And the nonlinear programming problem is converted into a linear programming problem. As a numerical example, the performance measures of waiting time and blocking probability for optimal access probabilities and the maximum utilization under the given constraints are obtained. And it is shown that the scheme with optimal APs gives more performance build-up than the strategy without optimization.

Equilibrium Point and Stability of Double-Free-Nodes Space Truss Under Symmetric Condition (대칭 조건을 갖는 2-자유절점 공간 트러스의 평형점과 안정성)

  • Ha, Junhong;Shon, Sudeok;Lee, Seungjae;Hwang, Kyung-Ju
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.4
    • /
    • pp.69-76
    • /
    • 2019
  • A stadium roof that uses the pin-jointed spatial truss system has to be designed by taking into account the unstable phenomenon due to the geometrical non-linearity of the long span. This phenomenon is mainly studied in the single-free-node model (SFN) or double-free-node model (DFN). Unlike the simple SFN model, the more complex DFN model has a higher order of characteristic equations, making analysis of the system's stability complicated. However, various symmetric conditions can allow limited analysis of these problems. Thus, this research looks at the stability of the DFN model which is assumed to be symmetric in shape, and its load and equilibrium state. Its governing system is expressed by nonlinear differential equations to show the double Duffing effect. To investigate the dynamic behavior and characteristics, we normalize the system of the model in terms of space and time. The equilibrium points of the system unloaded or symmetrically loaded are calculated exactly. Furthermore, the stability of these points via the roots of the characteristic equation of a Jacobian matrix are classified.

Geometric Nonlinear F.E. Analysis of Plane Frames Including Effects of the Internal Hinge (내부(內部)힌지효과(效果)를 고려(考慮)한 평면(平面) 뼈대구조(構造)의 기하학적(幾何學的)인 비선형(非線型) 유한요소해석(有限要素解析))

  • Kim, Moon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.93-103
    • /
    • 1994
  • Two beam/column elements are developed in order to analyze the geometric nonlinear plane irames including the effects of internal hinge and transverse shear deformation. In the case of the first element (finite segment method), tangent stiffness matrix is derived by directly integrating the equilibrium equations whereas in the case of the second element (finite element method) elastic and goemetric stiffness matrices are calculated by using the hermitian polynomials including the effects of internal hinge and shear deformation as the shape function. Numerical results are presented for the selected test problems which demonstrate that both elements represent reliable and highly accurate tools.

  • PDF

Effective flexural rigidities for RC beams and columns with steel fiber

  • Bengar, Habib Akbarzadeh;Kiadehi, Mohammad Asadi;Shayanfar, Javad;Nazari, Maryam
    • Steel and Composite Structures
    • /
    • v.34 no.3
    • /
    • pp.453-465
    • /
    • 2020
  • Influences of different variables that affect the effective flexural rigidity of reinforced concrete (RC) members are not considered in the most seismic codes. Furthermore, in the last decades, the application of steel fibers in concrete matrix designs has been increased, requiring development of an accurate analytical procedure to calculate the effective flexural rigidity of steel fiber reinforced concrete (SFRC) members. In this paper, first, a nonlinear analytical procedure is proposed to calculate the SFRC members' effective flexural rigidity. The proposed model's accuracy is confirmed by comparing the results obtained from nonlinear analysis with those recorded from the experimental testing. Then a parametric study is conducted to investigate the effects of different parameters such as varying axial load and steel fiber are then investigated through moment-curvature analysis of various SFRC (normal-strength concrete) sections. The obtained results show that increasing the steel fiber volume percentage increases the effective flexural rigidity. Also it's been indicated that the varying axial load affects the effective flexural rigidity. Lastly, proper equations are developed to estimate the effective flexural rigidity of SFRC members.

Elastodynamic and wave propagation analysis in a FG graphene platelets-reinforced nanocomposite cylinder using a modified nonlinear micromechanical model

  • Hosseini, Seyed Mahmoud;Zhang, Chuanzeng
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.255-271
    • /
    • 2018
  • This paper deals with the transient dynamic analysis and elastic wave propagation in a functionally graded graphene platelets (FGGPLs)-reinforced composite thick hollow cylinder, which is subjected to shock loading. A micromechanical model based on the Halpin-Tsai model and rule of mixture is modified for nonlinear functionally graded distributions of graphene platelets (GPLs) in polymer matrix of composites. The governing equations are derived for an axisymmetric FGGPLs-reinforced composite cylinder with a finite length and then solved using a hybrid meshless method based on the generalized finite difference (GFD) and Newmark finite difference methods. A numerical time discretization is performed for the dynamic problem using the Newmark method. The dynamic behaviors of the displacements and stresses are obtained and discussed in detail using the modified micromechanical model and meshless GFD method. The effects of the reinforcement of the composite cylinder by GPLs on the elastic wave propagations in both displacement and stress fields are obtained for various parameters. It is concluded that the proposed micromechanical model and also the meshless GFD method have a high capability to simulate the composite structures under shock loadings, which are reinforced by FGGPLs. It is shown that the modified micromechanical model and solution technique based on the meshless GFD method are accurate. Also, the time histories of the field variables are shown for various parameters.

Nonlinear Filter for Orbit Determination (궤도결정을 위한 비선형 필터)

  • Yoon, Jangho
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.21-28
    • /
    • 2016
  • Orbit determination problems have been interest of many researchers for long time. Due to the high nonlinearity of the equation of motion and the measurement model, it is necessary to linearize the both equations. To avoid linearization, the filter based on Fokker-Planck equation is designed. with the extended Kalman filter update mechanism, in which the associated Fokker-Planck equation was solved efficiently and accurately via discrete quadrature and the measurement update was done through the extended Kalman filter update mechanism. This filter based on the DQMOM and the EKF update is applied to the orbit determination problem with appropriate modification to mitigate the filter smugness. Unlike the extended Kalman filter, the hybrid filter based on the DQMOM and the EKF update does not require the burdensome evaluation of the Jacobian matrix and Gaussian assumption for the system, and can still provide more accurate estimations of the state than those of the extended Kalman filter especially when measurements are sparse. Simulation results indicate that the advantages of the hybrid filter based on the DQMOM and the EKF update make it a promising alternative to the extended Kalman filter for orbit estimation problems.

Nonlinear flexibility-based beam element on Winkler-Pasternak foundation

  • Sae-Long, Worathep;Limkatanyu, Suchart;Hansapinyo, Chayanon;Prachasaree, Woraphot;Rungamornrat, Jaroon;Kwon, Minho
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.371-388
    • /
    • 2021
  • A novel flexibility-based beam-foundation model for inelastic analyses of beams resting on foundation is presented in this paper. To model the deformability of supporting foundation media, the Winkler-Pasternak foundation model is adopted. Following the derivation of basic equations of the problem (strong form), the flexibility-based finite beam-foundation element (weak form) is formulated within the framework of the matrix virtual force principle. Through equilibrated force shape functions, the internal force fields are related to the element force degrees of freedom. Tonti's diagrams are adopted to present both strong and weak forms of the problem. Three numerical simulations are employed to assess validity and to show effectiveness of the proposed flexibility-based beam-foundation model. The first two simulations focus on elastic beam-foundation systems while the last simulation emphasizes on an inelastic beam-foundation system. The influences of the adopted foundation model to represent the underlying foundation medium are also discussed.