• Title/Summary/Keyword: nonlinear inelastic analysis

Search Result 327, Processing Time 0.026 seconds

Efficacy of pushover analysis methodologies: A critical evaluation

  • Dutta, Sekhar Chandra;Chakroborty, Suvonkar;Raychaudhuri, Anusrita
    • Structural Engineering and Mechanics
    • /
    • v.31 no.3
    • /
    • pp.265-276
    • /
    • 2009
  • Various Pushover analysis methodologies have evolved as an easy as well as designers-friendly alternative of nonlinear dynamic analysis for estimation of the inelastic demands of structures under seismic loading for performance based design. In fact, the established nonlinear dynamic analysis to assess the same, demands considerable analytical and computational background and rigor as well as intuitive insight into inelastic behavior for judging suitability of the results and its interpretation and hence may not be used in design office for frequent practice. In this context, the simple and viable alternative of Pushover analysis methodologies can be accepted if its efficacy is thoroughly judged over all possible varieties of the problems. Though this burning issue has invited some research efforts in this direction, still a complete picture evolving very clear guidelines for use of these alternate methodologies require much more detailed studies, providing idea about how the accuracy is influenced due to various combinations of basic parameters regulating inelastic dynamic response of the structures. The limited study presented in the paper aims to achieve this end to the extent possible. The study intends to identify the range of applicability of the technique and compares the efficacy of various alternative Pushover analysis schemes to general class of problems. Thus, the paper may prove useful in judicial use of Pushover analysis methodologies for performance based design with reasonable accuracy and relative ease.

Modelling inelastic hinges using CDM for nonlinear analysis of reinforced concrete frame structures

  • Rajasankar, J.;Iyer, Nagesh R.;Prasad, A. Meher
    • Computers and Concrete
    • /
    • v.6 no.4
    • /
    • pp.319-341
    • /
    • 2009
  • A new formulation based on lumped plasticity and inelastic hinges is presented in this paper for nonlinear analysis of Reinforced Concrete (RC) frame structures. Inelastic hinge behaviour is described using the principles of Continuum Damage Mechanics (CDM). Member formulation contains provisions to model stiffness degradation due to cracking of concrete and yielding of reinforcing steel. Depending on its nature, cracking is classified as concentrated or distributed. Concentrated cracking is accounted through a damage variable and its growth is defined based on strain energy principles. Presence of distributed flexural cracks in a member is taken care of by modelling it as non-prismatic. Plasticity theory supported by effective stress concept of CDM is applied to describe the post-yield response. Nonlinear quasi-static analysis is carried out on a RC column and a wide two-storey RC frame to verify the formulation. The column is subjected to constant axial load and monotonic lateral load while the frame is subjected to only lateral load. Computed results are compared with those due to experiments or other numerical methods to validate the performance of the formulation and also to highlight the contribution of distributed cracking on global response.

Advanced analysis for planar steel frames with semi-rigid connections using plastic-zone method

  • Nguyen, Phu-Cuong;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1121-1144
    • /
    • 2016
  • This paper presents a displacement-based finite element procedure for second-order distributed plasticity analysis of planar steel frames with semi-rigid beam-to-column connections under static loadings. A partially strain-hardening elastic-plastic beam-column element, which directly takes into account geometric nonlinearity, gradual yielding of material, and flexibility of semi-rigid connections, is proposed. The second-order effects and distributed plasticity are considered by dividing the member into several sub-elements and meshing the cross-section into several fibers. A new nonlinear solution procedure based on the combination of the Newton-Raphson equilibrium iterative algorithm and the constant work method for adjusting the incremental load factor is proposed for solving nonlinear equilibrium equations. The nonlinear inelastic behavior predicted by the proposed program compares well with previous studies. Coupling effects of three primary sources of nonlinearity, geometric imperfections, and residual stress are investigated and discussed in this paper.

Nonlinear Inelastic Analysis of 3-Dimensional Steel Structures Using Fiber Elements (화이버 요소를 이용한 3차원 강구조물의 비선형 비탄성 해석)

  • Kim, Seung-Eock;Oh, Jung-Ryul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.347-356
    • /
    • 2006
  • In this paper, practical nonlinear inelastic analysis method of 3-dimensional steel structures accounting for gradual yielding with fibers on a section is developed. Geometric nonlinearities of member(p-$\delta$) and frame(p-$\Delta$) are accounted for by using stability functions. Residual stresses are considered by assigning initial stresses to the fiber on the section. The elastic core in a section is investigated at every loading step to determine the axial and bending stiffness reduction. The strain reversal effect is captured by investigating the stress change of each fiber. The proposed analysis proves to be useful in applying for practical analysis and design of three-dimensional steel frames.

Inelastic Displacement Ratio for SDOF Bilinear and Damping Systems (이선형 단자유도 감쇠시스템의 비탄성변위비)

  • Han, Sang-Whan;Bae, Mun-Su;Cho, Jong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.6
    • /
    • pp.53-61
    • /
    • 2007
  • This study investigates the effect of site class, post-yield stiffness ratio, damping ratio, yield-strength reduction factor, and natural period on inelastic displacement ratio of bilinear SDF systems located at the sites classified as NEHRP site class B,C,D. The previous studies developed inelastic displacement ratio using equal displacement rule in the intermediate and long period range. But, this approximation overestimates the inelastic displacement ratio. Furthermore, inelastic displacement ratio has not been developed for the systems having a damping ratio less than 5%. This study conducts nonlinear regression analysis for proposing equations for calculating median and deviation of the inelastic displacement ratio of the bilinear SDOF system having damping ratios ranging from 0 to 20%. Using median and deviation of the inelastic displacement ratio, probabilistic inelastic displacement ratio is estimated, which can be used for performance-based seismic evaluation.

Inelastic transient analysis of piles in nonhomogeneous soil

  • Kucukarslan, S.;Banerjee, P.K.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.5
    • /
    • pp.545-556
    • /
    • 2007
  • In this paper, a hybrid boundary element technique is implemented to analyze nonlinear transient pile soil interaction in Gibson type nonhomeogenous soil. Inelastic modeling of soil media is presented by introducing a rational approximation to the continuum with nonlinear interface springs along the piles. Modified $\ddot{O}$zdemir's nonlinear model is implemented and systems of equations are coupled at interfaces for piles and pile groups. Linear beam column finite elements are used to model the piles and the resulting governing equations are solved using an implicit integration scheme. By enforcing displacement equilibrium conditions at each time step, a system of equations is generated which yields the solution. A numerical example is performed to investigate the effects of nonlinearity on the pile soil interaction.

Inelastic vector finite element analysis of RC shells

  • Min, Chang-Shik;Gupta, Ajaya Kumar
    • Structural Engineering and Mechanics
    • /
    • v.4 no.2
    • /
    • pp.139-148
    • /
    • 1996
  • Vector algorithms and the relative importance of the four basic modules (computation of element stiffness matrices, assembly of the global stiffness matrix, solution of the system of linear simultaneous equations, and calculation of stresses and strains) of a finite element computer program for inelastic analysis of reinforced concrete shells are presented. Performance of the vector program is compared with a scalar program. For a cooling tower problem, the speedup factor from the scalar to the vector program is 34 for the element stiffness matrices calculation, 25.3 for the assembly of global stiffness matrix, 27.5 for the equation solver, and 37.8 for stresses, strains and nodal forces computations on a Gray Y-MP. The overall speedup factor is 30.9. When the equation solver alone is vectorized, which is computationally the most intensive part of a finite element program, a speedup factor of only 1.9 is achieved. When the rest of the program is also vectorized, a large additional speedup factor of 15.9 is attained. Therefore, it is very important that all the modules in a nonlinear program are vectorized to gain the full potential of the supercomputers. The vector finite element computer program for inelastic analysis of RC shells with layered elements developed in the present study enabled us to perform mesh convergence studies. The vector program can be used for studying the ultimate behavior of RC shells and used as a design tool.

Revaluation of Inelastic Structural Response Factor for Seismic Fragility Evaluation of Equipment (기기의 지진취약도 평가를 위한 구조물 비탄성구조응답계수의 재평가)

  • Park, Junhee;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.241-248
    • /
    • 2015
  • There are a lot of equipment related to safety and electric power production in nuclear power plants. The structure and equipment in NPPs were generally designed considering a high safety factor to remain in the elastic zone under earthquake load. However it is needed to revaluate the seismic capacity of the structure and equipment as the magnitude of earthquake was recently increased. In this study the floor response due to the nonlinear behaviors of structure was analyzed and the inelastic structural response factor was calculated by the nonlinear time history analysis. The inelastic structural response factor was calculated by the EPRI method and the nonlinear analysis method to realistically evaluate the seismic fragility for the equipment. According to the analysis result, it was represented that the inelastic structural response factor was affected by the natural frequency of equipment, the location of equipment and the dynamic property of structure.

Prediction of Nonlinear Seismic Response (지진하중에 의한 구조물의 비선형 거동 예측)

  • Kim, Hee Joong
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.4 s.29
    • /
    • pp.77-84
    • /
    • 1996
  • The structural members under seismic loading actually show inelastic behavior, so the inelastic responses should be calculated for the seismic design of structures or estimating the structural damage level. Although direct time history analysis may calculate the exact dynamic nonlinear responses for given ground motions, this approach involves a high computational cost and long period. Therefore, it should be developed the approach to estimate nonlinear responses for the practical purpose. The artificial earthquake accelerograms were generated to obtain the smoothed responses spectra, and the samples of generated accelerogram for each seismic event was used to examine average nonlinear response spectra. The stabilized response spectra for each earthquake event was used to evaluate the effects of various yield strength ratios, damping values and nonlinear hysteretic models. The approach, which can simply predict the nonlinear seismic responses of structures, was shown in this study.

  • PDF

Pushover Analysis of Reinforced Concrete Shear Wall Subjected to High Axial Load Using Fiber Slices and Inelastic Shear Spring (섬유(Fiber)요소와 비선형 전단스프링을 적용한 고축력을 받는 철근콘크리트 전단벽의 비선형거동 분석)

  • Jun, Dae Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.239-246
    • /
    • 2015
  • Reinforced concrete shear walls are effective for resisting lateral loads imposed by wind or earthquakes. Observed damages of the shear wall in recent earthquakes in Chile(2010) and New Zealand(2011) exceeded expectations. Various analytical models have been proposed in order to incorporate such response features in predicting the inelastic response of RC shear walls. However, the model has not been implemented into widely available computer programs, and has not been sufficiently calibrated with and validated against extensive experimental data at both local and global response levels. In this study, reinforced concrete shear walls were modeled with fiber slices, where cross section and reinforcement details of shear walls can be arranged freely. Nonlinear analysis was performed by adding nonlinear shear spring elements that can represent shear deformation. This analysis result will be compared with the existing experiment results. To investigate the nonlinear behavior of reinforced concrete shear walls, reinforced concrete single shear walls with rectangular wall cross section were selected. The analysis results showed that the yield strength of the shear wall was approximately the same value as the experimental results. However, the yielding displacement of the shear wall was still higher in the experiment than the analysis. The analytical model used in this study is available for the analysis of shear wall subjected to high axial forces.