• Title/Summary/Keyword: nonlinear finite analysis program

Search Result 388, Processing Time 0.027 seconds

Analytical Approach to Evaluate the Nonlinear Beahviors of One-way Concrete Slab Reinforced with CFRP Grid Reinforcements (CFRP 그리드 보강근을 적용한 1-방향 콘크리트 슬래브의 해석적 방법에 의한 비선형 거동 평가)

  • Cheon, Ju-Hyun;Kim, Kyung-Min;Shin, Hyun-Mock
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.218-225
    • /
    • 2021
  • The purpose of this study is to present a rational analytical method for predicting the behavioral characteristics from crack occurrence to fracture for a one-way CFRP grid reinforced concrete slab specimen. A total of four specimens were selected by Zhang et al.(2004) as the main experimental variables for CFRP grid amount, material properties and loading method. Analysis was performed through the Nonlinear Finite Element analysis program(RCAHEST), which applied the newly modified constitutive relational equations by the author. The mean and coefficient of variation for maximum moment from the experiment and analysis results was predicted 1.38 and 7 %. The mean and coefficient of variation for displacement corresponding maximum moment from the experiment and analysis results was predicted 1.41and 9.8 %. The prediction results for the behavioral characteristics from crack occurrence to fracture were verified and evaluated. It is judged that additional research is needed to secure various experimental results and to develop a more reliable analytical method.

Heat Transfer Analysis and Experiments of Reinforced Concrete Slabs Using Galerkin Finite Element Method (Galerkin 유한요소법을 이용한 철근콘크리트 슬래브의 열전달해석 및 실험)

  • Han, Byung-Chan;Kim, Yun-Yong;Kwon, Young-Jin;Cho, Chang-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.567-575
    • /
    • 2012
  • A research was conducted to develop a 2-D nonlinear Galerkin finite element analysis of reinforced concrete structures subjected to high temperature with experiments. Algorithms for calculating the closed-form element stiffness for a triangular element with a fully populated material conductance are developed. The validity of the numerical model used in the program is established by comparing the prediction from the computer program with results from full-scale fire resistance tests. Details of fire resistance experiments carried out on reinforced concrete slabs, together with results, are presented. The results obtained from experimental test indicated in that the proposed numerical model and the implemented codes are accurate and reliable. The changes in thermal parameters are discussed from the point of view of changes of structure and chemical composition due to the high temperature exposure. The proposed numerical model takes into account time-varying thermal loads, convection and radiation affected heat fluctuation, and temperature-dependent material properties. Although, this study considered standard fire scenario for reinforced concrete slabs, other time versus temperature relationship can be easily incorporated.

Predictions of Seismic Behavior of Reinforced Concrete Bridge Columns

  • Kim Tae-Hoon;Kim Woon-Hak;Lee Kwang-Myong;Shin Hyun-Mock
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.441-450
    • /
    • 2004
  • The objectives of this study are to investigate the seismic behavior of reinforced concrete bridge columns and to provide the data for developing improved seismic design criteria. The accuracy and objectivity of the assessment process can be enhanced by the use of sophisticated nonlinear finite element analysis program. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The low-cycle fatigue damage of both concrete and reinforcing bars has been also considered in order to predict a reliable seismic behavior. The proposed numerical method for the prediction of seismic behavior of reinforced concrete bridge columns is verified by comparison with the reliable experimental results.

A fuzzy optimum design of axisymmetrically loaded thin shells of revolution

  • Kang, Moon-Myung;Mu, Zai-Gen;Kim, Seung-Deog;Kwun, Taek-Jin
    • Structural Engineering and Mechanics
    • /
    • v.7 no.3
    • /
    • pp.277-288
    • /
    • 1999
  • This paper presents a fuzzy optimum design of axisymmetrically loaded thin shells of revolution. This paper consists of two parts, namely: an elastic analysis using the new curved element for finite element analysis developed in this study for axisymmetrically loaded thin shells of revolution, and the volume optimization on the basis of results evaluated from the elastic analysis. The curved element to meridian direction is used to develop the computer program. The results obtained from the computer program are compared by exact solution of each analytic example. The fuzzy optimizations of thin shells of revolution are done using [Model 2] which is in the form of a conventional crisp objective function and constraints with non-membership function, and nonlinear optimum GINO (General Interactive Optimizer) programming. In this paper, design examples show that the fuzzy optimum designs of the steel water tank and the steel dome roof could provide significant cost savings.

Evaluation of Seismic Response of Masonry Walls Strengthened with Steel-bar Truss Systems by Non-linear Finite Element Analysis (비선형 유한요소 해석에 의한 강봉 트러스 시스템으로 보강된 조적벽체의 내진거동 평가)

  • Hwang, Seung-Hyeon;Yang, Keun-Hyeok;Kim, Sang-Hee;Lim, Jin-Sun;Im, Chae-Rim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.20-27
    • /
    • 2021
  • The present study presents a nonlinear finite element analysis (FEA) approach using the general program of Abaqus to evaluate the seismic response of unreinforced masonry walls strengthened with the steel bar truss system developed in the previous investigation. For finite element models of masonry walls, the concrete damaged plasticity (CDP) and meso-scale methods were considered on the basis of the stress-strain relationships under compression and tension and shear friction-slip relationship of masonry prisms proposed by Yang et al. in order to formulate the interface characteristics between brick elements and mortars. The predictions obtained from the FEA approach were compared with test results under different design parameters; as a result, a good agreement could be observed with respect to the crack propagation, failure mode, rocking strength, peak strength, and lateral load-displacement relationship of masonry walls. Thus, it can be stated that the proposed FEA approach shows a good potential for designing the seismic strengthening of masonry walls.

A Study on Plastic Zone at the Crack Tip under Cyclic Loading by FEM (유한요소법을 이용한 피로하중을 받는 균열선단의 소성영역크기에 대한 연구)

  • Kim, Kyung-Su;Shim, Chun-Sik;Lee, Wook-Jae;Cho, Hyung-Min
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.151-154
    • /
    • 2002
  • In this paper, the effect of the crack growth length on the plastic zone size at the crack tip and the crack growth lives of the DENT specimen under constant amplitude cyclic loading were studied. The plastic zone size was calculated by nonlinear static method in commercial finite element analysis program, MSC/NASTRAN and the crack growth lives were also calculated by using compliance function considering geometric shape in MSC/FATIGUE. The calculated plastic zone size increased proportional to the crack length. And comparison of calculated plastic zone size and crack growth lives with the experimental results shows a good agreement.

  • PDF

Magnetic Field Distribution Characteristics of Ring-Shaped Electrodeless Fluorescent Lamp (둥근형 무전극 형광램프의 자계 분포 특성)

  • Choi, Yong-Sung;Cho, Jae-Cheol;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.53-57
    • /
    • 2006
  • In this paper, maxwell 3D finite element analysis program (Ansoft) was used to obtain electromagnetic properties associated with the coil and nearby structures. The electromagnetic emitting properties were presented by 3D simulation software operated at 250 kHz and some specific conditions. The electromagnetic field in the ferrite core was shown to be high and symmetric. An LS-100 luminance meter and a Darsa-2000 spectrum analyzer were used in the experiment. According to data on the lamp tested using high magnetic field ferrite, the optical and thermal wave fields were shown to be high around the ring-shaped electrodeless fluorescent lamp. The optical or light field was high at the center of the bulb rather than around the ferrite core. The light conditions of the bulb were assumed to be complex, depending on the condition of the filler gas, the volume of the bulb, and the frequency of the inverter. Our results have shown coupling between the gas plasma and the field of the light emitted to be nonlinear.

  • PDF

The flexural behavior of ferrocement RC channel slabs

  • Yousry B.I. Shaheen;Ashraf M. Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.92 no.1
    • /
    • pp.1-23
    • /
    • 2024
  • The current study examines the experimental and numerical performance of reinforced concrete (RC) channel slabs made of ferrocement that have been reinforced with fiber glass, expanded steel mesh, and welded steel mesh. As part of the testing program, ten RC channel slabs with dimensions of 500 mm×40 mm×2500 mm were loaded flexibly. The three main factors that can be altered are the mesh layer count, the type of reinforcing materials, and the reinforcement volume fraction. The main objective is to assess the effects of fortifying composite RC channel slabs with novel inventive materials. ANSYS-16.0 Software was used to simulate the behavior of composite channel slabs using nonlinear finite element analysis (NLFEA). It also shows how parametric analysis can be used to pinpoint variables like variations in slab dimensions that could significantly affect the mechanical behavior of the model. The obtained experimental and numerical results showed that finite element (FE) simulations had a tolerable degree of accuracy in estimating experimental values. It is crucial to show that specimens strengthened with fiber glass meshes gained about 12% lessstrength than specimens strengthened with expanded or welded steel meshes. In addition, RC channel slab reinforcement made of welded steel meshes has a 24% higher strength than expanded steel meshes. Tested under flexural loads, ferrocement specimens outperform conventional reinforced concrete specimens in terms of ultimate loads and energy absorption.

Elasto-Plastic Anisotropic-Damage Model for Concrete (콘크리트의 탄-소성 이방성-손상 모델)

  • 이기성;송하원
    • Computational Structural Engineering
    • /
    • v.9 no.1
    • /
    • pp.65-76
    • /
    • 1996
  • The initiation and growth of microcracks or microvoids inside concrete results in the progressive degradation of concrete. This damage processing along processing along with plastic deformation is main cause of nonlinear behavior of concrete. In this study, a continuum damage model of concrete is developed for the analysis of the nonlinear behavior of concrete due to damage and elasto-plastic deformation. Anisotropic damage tensor is used to describe the anisotropy of concrete and hypothesis of equivalent elastic energy is used to define the effective elastic tensor. The damage model including the damage evolution law and constitutive equation is derived with damage variable and damage surface which is defined by damage energy release rate by using the Helmholtz free energy and dissipation potential based on the thermodynamic principles. By adopting a typical plasticity model of concrete, plasticity of concrete is included to this model. Afinite element analysis program implemented with this model was developed and finite element analysis was performed for the analyses of concrete subjected to uniaxial and biaxial loadings. Comparison of the results of analysis with those of experiments and other models shows that the model successfully predicts the nonlinear behavior of concrete.

  • PDF

Nonlinear Analysis of Precast Concrete Wall Structures (프리캐스트 콘크리트 판구조의 비선형 해석)

  • 서수연;이원호;이리형
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.189-196
    • /
    • 2000
  • The objective of this paper is to propose an analysis technique to predict the behavior of PC wall structures subjected to cyclic load. While PC wall panel is idealized by finite elements, the joints at which PC walls are connected each other are idealized by nonlinear spring elements. Axial and shear spring elements are developed for simulating shear, compression and tension behaviors of joints. The strength and stiffness of each spring elements we presented from the previous research results and incorporated into the computer program of DRAIN-2DX. The proposed analysis technique is evaluated by analyzing specimens previously tested and comparing with those. On the strength, stiffness, energy dissipation and lateral drift, analytical results show good agreements with test results. This means the proposed technique is effective to predict the response of the PC wall structures.

  • PDF