• 제목/요약/키워드: nonlinear engine speed/torque control

검색결과 8건 처리시간 0.021초

트로틀 앵글 제어에 의한 내연기관의 토오크 및 속도의 비선형 제어 (Nonlinear Control of Torque and Speed of S.I.Engines Using Electric Throttle Control)

  • 원문철;강병배;박문수;김태영
    • 한국자동차공학회논문집
    • /
    • 제7권6호
    • /
    • pp.72-81
    • /
    • 1999
  • A nonlinear engine torque and speed control algorithm using throttle angle control is developed with an engine load torque estimation algorithm. Three 3-dimensional nonlinear engine maps as a part of the nonlinear control algorithm are obtained from steady state engine dynamometer tests. An electric throttle actuator is developed using a stepper motor and a 8 bit micro-processor. The speed control and external load estimation algorithm are tested via engine speed control experiments, and show performance good enough for using various engine torque and speed control applications.

  • PDF

시간지연 제어를 이용한 엔진 토크 및 엔진/자동변속기 속도 제어 시스템 (Engine torque and engine/automatic trandmission speed control systems using time delay control)

  • 송재복;이승만
    • 제어로봇시스템학회논문지
    • /
    • 제2권2호
    • /
    • pp.81-87
    • /
    • 1996
  • Time delay control(TDC) law has been recently suggested as an effective control technique for nonlinear time-varying systems with uncertain dynamics and/or unpredictable disturbances. This paper focuses on the applications of the TDC algorithm to torque control of an engine system and speed control of an engine/automatic transmission system. Through the stability analysis of the engien system based on TDC, determination of the appropriate time delay and control factor is investigated. It was revealed that the size of time delay of the TDC law should be greater than that of transport delay of the system for both stability and better control performance. Simulation and experimental results for the engine torque control and engine/automatic transmission speed control systems show both relatively good command following and disturbance rejection properties. However, TDC controller shows rather slow responses when applied to the system with large transport delay.

  • PDF

비선형 슬라이딩 모드 제어기 및 관측기를 이용한 엔진 공회전 제어 (Engine Idle Speed Control Using Nonlinear Sliding Mode Controller and Observer)

  • 오소력;최재원;김종식
    • 제어로봇시스템학회논문지
    • /
    • 제5권2호
    • /
    • pp.151-157
    • /
    • 1999
  • In this paper, an integrated nonlinear sliding mode observer and controller has been designed in order to control of an automotive engine idle speed. The primary objective of the engine idle speed control is to maintain the desired engine idle speed despite of various torque disturbances via estimating air mass flow at the location of the injector in intake manifold by using a sliding mode observer. Simulation results show that the case where both throttle angle and ignition time are used as control inputs outperforms the case where just only throttle angle is used as a control input.

  • PDF

수중운동체용 디절엔진의 속도제어를 위한 견실제어기 설계 (Robust Controller Design for the Speed Control of Underwater Vehicle Diesel Engine)

  • 정찬희;한명철;하인철;양승윤;정희석;김성용
    • 한국정밀공학회지
    • /
    • 제17권1호
    • /
    • pp.68-75
    • /
    • 2000
  • In this paper, the robust controller design is performed for the speed control of the underwater vehicle diesel engine. Nonlinear model equations are acquired through the mathematical modeling using mean torque production model technique. It is very difficult to design the robust controller because those are high nonlinear and not expressed in terms of the matched uncertainty Therefore those are converted into the separable model into the linear nominal system and the nonlinear uncertainty term.

  • PDF

Design of Controllers for the Stable Idle Speed in the Internal Combustion Engine

  • Lee, Young-Choon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권4호
    • /
    • pp.54-60
    • /
    • 2001
  • This paper deals with control design method having anticipation delay which is proposed for the discrete nonlinear engine where system dynamics is not accurate. Due to the induction-to-power delay in internal combustion(IC) engine having abrupt torque loss, underdamping and chattering in engine idle speed becomes a serious problem and it could make drivers uncomfortable. For this reason, Three types of the closed-loop controller are developed for the stable engine idle speed control. The inputs of the controllers are an engine idle speed and air conditioning signal. The output of the controllers is an duty cycle to operate the idle speed control valve(ISCV). The proposed controllers will be useful for improving actual vehicles since these shows good test

  • PDF

슬라이딩 모드 관측기에 의한 최적의 공회전 제어기 설계 (Design of Optimal Idle Speed Controller by Sliding Mode Observer)

  • 이영춘;이성철
    • 한국정밀공학회지
    • /
    • 제18권10호
    • /
    • pp.161-167
    • /
    • 2001
  • This paper presents an approach to nonlinear engine idle controller and intake manifold absolute pressure(MAP) observer based on mean torque production model. A stable engine idle speed is important in that the unstable engine Idle mode can make engine to drooping or stall state. A sliding fuzzy controller has been designed to control engine idle speed under load disturbance. A sliding observer is also developed to estimate the intake manifold absolute pressure and compared with the actual MAP sensor value. The sliding mode observer has shown good robustness and good tracking performance. The inputs of sliding fuzzy controller are the errors of rpm and MAP. The output is a duty cycle(DC) for driving a idle speed control valve(ISCV).

  • PDF

엔진-발전기 시스템 모델링 및 제어특성에 관한 실험적 연구 (An Experimental Study upon Modeling and Control of Coupled Engine and Generator System)

  • 송승호;정세종;오정훈;함윤영;최용각;이광희
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.163-169
    • /
    • 2003
  • Modeling of engine-generator system and its control responses are investigated using high performance generator controller. The nonlinear engine is modeled using mean torque production model based on experimental engine map. In case of diesel engine. the amount of injected fief is decided by engine controller depending on the APS(Acceleration Position Sensor) value. An electromechanical generator model contains electrical circuits and moment of inertia. The generator controller maximizes the performance of generator using decoupling and linearized current feedback control. The generator control system consists of 3-phase IGBT inverter and controller board based on 32 bit floating point DSP. Field oriented control algorithm with digital current feedback control at 10kHz sampling enabled high performance torque and speed control of induction machine. Not only the steady state but also the transient state responses can be evaluated through a batch test of the engine generator system. Developed engine and generator modeling and control can be utilized in various applications such as Series Hybrid Electric Vehicle(SHEV), engine-generator for emergency, and other hybrid generation systems.

SIMULATION OF STARTING PROCESS OF DIESEL ENGINE UNDER COLD CONDITIONS

  • Park, J.K.
    • International Journal of Automotive Technology
    • /
    • 제8권3호
    • /
    • pp.289-298
    • /
    • 2007
  • A nonlinear dynamic simulation model from cranking to idle speed is developed to optimize the cold start process of a diesel engine. Physically-based first order nonlinear differential equations and some algebraic equations describing engine dynamics and starter motor dynamics are used to model the performance of cold starting process which is very complex and involves many components including the cold start aiding method. These equations are solved using numerical schemes to describe the starting process of a diesel engine and to study the effects of cold starting parameters. The validity of this model is examined by a cold start test at $-20^{\circ}C$. Using the developed model the effects of the important starting variables on the cold starting processes were investigated. This model can be served as a tool for designing computer aided control systems that improve cold start performance.