• Title/Summary/Keyword: nonlinear elastic medium

Search Result 50, Processing Time 0.018 seconds

A Basic Research on Estimation of Material Condition by Using Nonlinear Elastic Modulus (비선형 탄성계수를 이용한 재료변질 상태평가에대한 기초적 연구)

  • 김경조;장경영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.348-352
    • /
    • 1995
  • In the conventional linear elasticity, ultrasonic velocity is determined by elastic modulus and density of te medium which ultrasonic wave propagates through. But, practical ultrsonic wave depends on the stress acting in the medium, and as the stress increases such dependency becomes nonlinear. This nonlinear dependencyof ultrasonic velocity on stress can be identified by using nonlinear elastic modulus up to 4th order. In thid paper, with the above background relationships between nonlinear elastic modulus and the internalstatus of materials, normal, plastic deformed or heat stressed, are discussed. For this purpose, a new type of measuring system extended from the general nondestructive UT(ultrasonic test) equipment is constructed.

  • PDF

Nonlinear bending analysis of porous FG thick annular/circular nanoplate based on modified couple stress and two-variable shear deformation theory using GDQM

  • Sadoughifar, Amirmahmoud;Farhatnia, Fatemeh;Izadinia, Mohsen;Talaeitaba, Sayed Behzad
    • Steel and Composite Structures
    • /
    • v.33 no.2
    • /
    • pp.307-318
    • /
    • 2019
  • This is the first attempt to consider the nonlinear bending analysis of porous functionally graded (FG) thick annular and circular nanoplates resting on Kerr foundation. The size effects are captured based on modified couple stress theory (MCST). The material properties of the porous FG nanostructure are assumed to vary smoothly through the thickness according to a power law distribution of the volume fraction of the constituent materials. The elastic medium is modeled by Kerr elastic foundation which consists of two spring layers and one shear layer. The governing equations are extracted based on Hamilton's principle and two variables refined plate theory. Utilizing generalized differential quadrature method (GDQM), the nonlinear static behavior of the nanostructure is obtained under different boundary conditions. The effects of various parameters such as material length scale parameter, boundary conditions, and geometrical parameters of the nanoplate, elastic medium constants, porosity and FG index are shown on the nonlinear deflection of the annular and circular nanoplates. The results indicate that with increasing the material length scale parameter, the nonlinear deflection is decreased. In addition, the dimensionless nonlinear deflection of the porous annular nanoplate is diminished with the increase of porosity parameter. It is hoped that the present work may provide a benchmark in the study of nonlinear static behavior of porous nanoplates.

Nonlinear higher order Reddy theory for temperature-dependent vibration and instability of embedded functionally graded pipes conveying fluid-nanoparticle mixture

  • Raminnea, M.;Biglari, H.;Tahami, F. Vakili
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.153-186
    • /
    • 2016
  • This paper addresses temperature-dependent nonlinear vibration and instability of embedded functionally graded (FG) pipes conveying viscous fluid-nanoparticle mixture. The surrounding elastic medium is modeled by temperature-dependent orthotropic Pasternak medium. Reddy third-order shear deformation theory (RSDT) of cylindrical shells are developed using the strain-displacement relations of Donnell theory. The well known Navier-Stokes equation is used for obtaining the applied force of fluid to pipe. Based on energy method and Hamilton's principal, the governing equations are derived. Generalized differential quadrature method (GDQM) is applied for obtaining the frequency and critical fluid velocity of system. The effects of different parameters such as mode numbers, nonlinearity, fluid velocity, volume percent of nanoparticle in fluid, gradient index, elastic medium, boundary condition and temperature gradient are discussed. Numerical results indicate that with increasing the stiffness of elastic medium and decreasing volume percent of nanoparticle in fluid, the frequency and critical fluid velocity increase. The presented results indicate that the material in-homogeneity has a significant influence on the vibration and instability behaviors of the FG pipes and should therefore be considered in its optimum design. In addition, fluid velocity leads to divergence and flutter instabilities.

On the elastic parameters of the strained media

  • Guliyev, Hatam H.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.53-67
    • /
    • 2018
  • The changes of parameters of pressure and velocity of propagation of elastic pressure and shear waves in uniformly deformed solid compressible media are studied within the nonclassically linearized approach (NLA) of nonlinear elastodynamics to create a new theoretical basis of the geomechanical interpretation of various groups of geophysical observational and experimental data. The cases of small and large deformations are considered while their describing by various elastic potentials, i.e., problems considering the physical and geometric nonlinearity. Convenient analytical formulae are obtained to calculate the indicated parameters in the deformed isotropic media within the nonclassical linear and nonlinear solution in the NLA. Specific numerical experiments are conducted in case of overall compression of various materials. It is shown that the method (generally accepted in the studies of mechanics of standard constructional materials) of additional linearization (relative to the pressure parameter) in the basic correlations of the NLA introduces substantial quantitative and qualitative errors into the results at significant preliminary deformations. The influences of the physical and geometric nonlinearity on the studied characteristics of the medium are large in various materials and differ qualitatively. The contribution of nonlinear components to the values of the considered parameters prevails over linear components at large deformations. When certain critical values of compression deformations in the medium are achieved, elastic waves with actual velocity cannot propagate in it. The values of the critical deformations for pressure and shear waves differ within different elastic potentials and variants of the theory of initial deformations.

Post-buckling of cylindrical shells with spiral stiffeners under elastic foundation

  • Shaterzadeh, Alireza;Foroutan, Kamran
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.615-631
    • /
    • 2016
  • In this paper, an analytical method for the Post-buckling response of cylindrical shells with spiral stiffeners surrounded by an elastic medium subjected to external pressure is presented. The proposed model is based on two parameters elastic foundation Winkler and Pasternak. The material properties of the shell and stiffeners are assumed to be continuously graded in the thickness direction. According to the Von Karman nonlinear equations and the classical plate theory of shells, strain-displacement relations are obtained. The smeared stiffeners technique and Galerkin method is used to solve the nonlinear problem. To valid the formulations, comparisons are made with the available solutions for nonlinear static buckling of stiffened homogeneous and un-stiffened FGM cylindrical shells. The obtained results show the elastic foundation Winkler on the response of buckling is more effective than the elastic foundation Pasternak. Also the ceramic shells buckling strength higher than the metal shells and minimum critical buckling load is occurred, when both of the stiffeners have angle of thirty degrees.

Nonlinear vibration and stability of FG nanotubes conveying fluid via nonlocal strain gradient theory

  • Dang, Van-Hieu;Sedighi, Hamid M.;Chan, Do Quang;Civalek, Omer;Abouelregal, Ahmed E.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.103-116
    • /
    • 2021
  • In this work, a model of a functionally graded (FG) nanotube conveying fluid embedded in an elastic medium is developed based on the nonlocal strain gradient theory (NSGT) in conjunction with Euler-Bernoulli beam theory (EBT). The main objective of this research is to investigate the nonlinear vibration and stability analysis of fluid-conveying nanotubes. The governing equations of motion are derived by means of Hamiltonian principle. The analytical expressions of nonlinear frequencies and critical flow velocities for two different types of boundary conditions including pinned-pinned (P-P) and clamped-clamped (C-C) conditions are obtained by employing Galerkin method as well as Hamiltonian Approach (HA). Comparison of the obtained results with the published works show the acceptable accuracy of the current solutions. The effects of the power-law index, the nonlocal and material length scale parameters and the elastic medium on the stability and nonlinear responses of FG nanotubes are thoroughly investigated and discussed.

A Basic Research on Estimation of Material Condition by Using Stress Dependency of Sound Speed (음속의 응력의존성을 이용한 재료 상태평가에 대한 기초적 연구)

  • Kim, K.J.;Jhang, K.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.53-60
    • /
    • 1996
  • In the conventional linear elasticity, sound speed is determined by only elastic modulus and density of the medium. In actual, however, sound speed depends on the stress and this dependency becomes nonlinear as the stress increases. These phenomena can be introducing nonlinear elastic modulus. In this paper, relationships between nonlinear elastic modulus up to 4th order and the internal status of materials are discussed through computer simulations and experiments. For the measurement of sound speed, a new type of measurement system using ultrasonic wave is proposed on the basis of ultrasonic pulse echo method which has been generally used in nondestructive ultrasonic test equipment. In order to confirm the stress dependency of sound speed, several experiments are carried out for alumina specimen.

  • PDF

A nonlocal strain gradient theory for nonlinear free and forced vibration of embedded thick FG double layered nanoplates

  • Mahmoudpour, E.;Hosseini-Hashemi, SH.;Faghidian, S.A.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.103-119
    • /
    • 2018
  • In the present research, an attempt is made to obtain a semi analytical solution for both nonlinear natural frequency and forced vibration of embedded functionally graded double layered nanoplates with all edges simply supported based on nonlocal strain gradient elasticity theory. The interaction of van der Waals forces between adjacent layers is included. For modeling surrounding elastic medium, the nonlinear Winkler-Pasternak foundation model is employed. The governing partial differential equations have been derived based on the Mindlin plate theory utilizing the von Karman strain-displacement relations. Subsequently, using the Galerkin method, the governing equations sets are reduced to nonlinear ordinary differential equations. The semi analytical solution of the nonlinear natural frequencies using the homotopy analysis method and the exact solution of the nonlinear forced vibration through the Harmonic Balance method are then established. The results show that the length scale parameters give nonlinearity of the hardening type in frequency response curve and the increase in material length scale parameter causes to increase in maximum response amplitude, whereas the increase in nonlocal parameter causes to decrease in maximum response amplitude. Increasing the material length scale parameter increases the width of unstable region in the frequency response curve.

Viscous fluid induced vibration and instability of FG-CNT-reinforced cylindrical shells integrated with piezoelectric layers

  • Bidgoli, Mahmood Rabani;Karimi, Mohammad Saeed;Arani, Ali Ghorbanpour
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.713-733
    • /
    • 2015
  • In this paper, viscous fluid induced nonlinear free vibration and instability analysis of a functionally graded carbon nanotube-reinforced composite (CNTRC) cylindrical shell integrated with two uniformly distributed piezoelectric layers on the top and bottom surfaces of the cylindrical shell are presented. Single-walled carbon nanotubes (SWCNTs) are selected as reinforcement and effective material properties of FG-CNTRC cylindrical shell are assumed to be graded through the thickness direction and are estimated through the rule of mixture. The elastic foundation is modeled by temperature-dependent orthotropic Pasternak medium. Considering coupling of mechanical and electrical fields, Mindlin shell theory and Hamilton's principle, the motion equations are derived. Nonlinear frequency and critical fluid velocity of sandwich structure are calculated based on differential quadrature method (DQM). The effects of different parameters such as distribution type of SWCNTs, volume fractions of SWCNTs, elastic medium and temperature gradient are discussed on the vibration and instability behavior of the sandwich structure. Results indicate that considering elastic foundation increases frequency and critical fluid velocity of system.

Thermo-electro-elastic nonlinear stability analysis of viscoelastic double-piezo nanoplates under magnetic field

  • Ebrahimi, Farzad;Hosseini, S. Hamed S.;Selvamani, Rajendran
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.565-584
    • /
    • 2020
  • The nonlinear thermo-electro-elastic buckling behavior of viscoelastic nanoplates under magnetic field is investigated based on nonlocal elasticity theory. Employing nonlinear strain-displacement relations, the geometrical nonlinearity is modeled while governing equations are derived through Hamilton's principle and they are solved applying semi-analytical generalized differential quadrature (GDQ) method. Eringen's nonlocal elasticity theory considers the effect of small size, which enables the present model to become effective in the analysis and design of nano-sensors and nano actuators. Based on Kelvin-Voigt model, the influence of the viscoelastic coefficient is also discussed. It is demonstrated that the GDQ method has high precision and computational efficiency in the buckling analysis of viscoelastic nanoplates. The good agreement between the results of this article and those available in literature validated the presented approach. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as electric voltage, small scale effects, elastomeric medium, magnetic field, temperature effects, the viscidity and aspect ratio of the nanoplate on its nonlinear buckling characteristics. It is explicitly shown that the thermo-electro-elastic nonlinear buckling behavior of viscoelastic nanoplates is significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of viscoelastic nanoplates as fundamental elements in nanoelectromechanical systems.