• 제목/요약/키워드: nonlinear earthquake response

검색결과 543건 처리시간 0.019초

A new non-iterative procedure to estimate seismic demands of structures

  • Mechaala, Abdelmounaim;Chikh, Benazouz
    • Earthquakes and Structures
    • /
    • 제22권6호
    • /
    • pp.585-595
    • /
    • 2022
  • Using the nonlinear static procedures has become very common in seismic codes to achieve the nonlinear response of the structure during an earthquake. The capacity spectrum method (CSM) adopted in ATC-40 is considered as one of the most known and useful procedures. For this procedure the seismic demand can be approximated from the maximum deformation of an equivalent linear elastic Single-Degree-of-Freedom system (SDOF) that has an equivalent damping ratio and period by using an iterative procedure. Data from the results of this procedure are plotted in acceleration- displacement response spectrum (ADRS) format. Different improvements have been made in order to have more accurate results compared to the Non Linear Time History Analysis (NL-THA). A new procedure is presented in this paper where the iteration process shall not be required. This will be done by estimation the ductility demand response spectrum (DDRS) and the corresponding effective damping of the bilinear system based on a new parameter of control, called normalized yield strength coefficient (η), while retaining the attraction of graphical implementation of the improved procedure of the FEMA-440. The proposed procedure accuracy should be verified with the NL-THA analysis results as a first implementation. The comparison shows that the new procedure provided a good estimation of the nonlinear response of the structure compared with those obtained when using the NL-THA analysis.

구조물-지반 상호작용 영향을 고려한 새로운 지반계수 평가방법에 대한 제안 (Proposed New Evaluation Method of the Site Coefficients Considering the Effects of the Structure-Soil Interaction)

  • 김용석
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.327-336
    • /
    • 2006
  • Site coefficients in IBC and KBC codes have some limits to predict the rational seismic responses of a structure, because they consider only the effect of the soil amplification without the effects of the structure-soil interaction. In this study, upper and lower limits of site coefficients are estimated through the pseudo 3-D elastic seismic response analyses of structures built on linear or nonlinear soil layers considering the structure-soil interaction effects. Soil characteristics of site classes of A, B, and C were assumed to be linear, and those of site classes of D and E were done to be nonlinear and the Ramberg-Osgood model was used to evaluate shear modulus and damping ratio of a soil layer depending on the shear wave velocity of a soil layer. Seismic analyses were performed with 12 weak or moderate earthquake records, scaled the peak acceleration to 0.1g or 0.2g and deconvoluted as earthquake records at the bedrock 30m beneath the outcrop. With the study results of the elastic seismic response analyses of structures, new standard response spectrum and upper and lower limits of the site coefficients of Fa and Fv at the short period range and the period of 1 second are suggested Including the structure-soil interaction effects.

  • PDF

2016년 경주지진에 의한 국내 도시철도 교량의 잠재적 손상평가 (Damage Potential of a Domestic Metropolitan Railway Bridge subjected to 2016 Gyeongju Earthquake)

  • 이도형;심재엽;전종수
    • 한국지진공학회논문집
    • /
    • 제20권7_spc호
    • /
    • pp.461-472
    • /
    • 2016
  • Damage potential has been investigated for a domestic metropolitan railway bridge subjected to 2016 Gyeongju earthquake which has been reported as the strongest earthquake in Korea. For this purpose, nonlinear static pushover analyses for the bridge piers have been carried out to evaluate ductility capacities. Then, the capacities have been compared with those suggested by Railway Design Standards of Korea. This comparison shows that all piers possess enough safety margins. Nonlinear dynamic time-history analysis has also been conducted to estimate both displacement and shear force demands for the bridge subjected to ground motions recorded at stations in near of Gyeongju. Maximum demands reveal that response under the ground motions remains essentially in elastic. In addition, for a further assessment of the bridge under the Gyeongju earthquake, fragility analyses have been performed using those ground motions. The fragility results indicate that the recorded earthquakes do not significantly affect the damage exceedance probability of the bridge piers.

2016년 경주지진에 의한 중층 RC 건물의 내진 성능 평가 (Seismic Performance Assessment of a Mid-Rise RC Building subjected to 2016 Gyeongju Earthquake)

  • 이도형;전종수
    • 한국지진공학회논문집
    • /
    • 제20권7_spc호
    • /
    • pp.473-483
    • /
    • 2016
  • In this paper, seismic performance assessment has been examined for a mid-rise RC building subjected to 2016 Gyeongju earthquake occurred in Korea. For the purpose of the paper, 2D external and internal frames in each direction of the building have been employed in the present comparative analyses. Nonlinear static pushover analyses have been conducted to estimate frame capacities. Nonlinear dynamic time-history analyses have also been carried out to examine demands for the frames subjected to ground motions recorded at stations in near of Gyeongju and a previous earthquake ground motion. Analytical predictions demonstrate that maximum demands are significantly affected by characteristics of both spectral acceleration response and spectrum intensity over a wide range of periods. Further damage potential of the frames has been evaluated in terms of fragility analyses using the same ground motions. Fragility results reveal that the ground motion characteristics of the Gyeongju earthquake have little influence on the seismic demand and fragility of frames.

동적기본해의 역FFT에 의한 비선형 지반-말뚝-구조계의 시간영역 지진응답 해석 (Time Domain Seismic Response Analysis of Nonlinear Soil-Pile-Structure Interaction System using Inverse FFT of Dynamic Fundamental Solution)

  • 김문겸;임윤묵;조석호;박종헌;정대희
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.125-132
    • /
    • 2002
  • In this study, a numerical method is developed for nonlinear analysis for soil-pile-structure interaction system in time domain. Finite elements considering material nonlinearity are used for the near field and boundary elements for the far field. In the near field, frame elements are used for modeling a pile and plane-strain elements for surrounding soil and superstructure. In. the far field, boundary element formulation using the dynamic fundamental solution is adopted and coupled with the near field. Transformation of stiffness matrices of boundary elements into time domain is performed by inverse FFT. Stiffness matrices in the near field and far field are coupled. Newmark direct time integration method is applied. Developed soil-pile-structure interaction analysis method is verified with available literature and commercial code. Also, parametric studies by developed numerical method are performed. And seismic response analysis is performed using actual earthquake records.

  • PDF

지반-구조물 상호작용을 고려한 교량상 장대레일의 비선형 지진응답해석 (Nonlinear earthquake response analysis of CWR on bridge considering soil-structure interaction.)

  • 신한철;조선규;양신추;최준성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.733-738
    • /
    • 2004
  • Recently continuous welded rail is generally used to ensure running performances and to overcome the problems such as structural vulnerability and fastener damage at the rail expansion joint. Though the use of continuous welded rail on bridge has the advantage of decreasing the vibration and damage of rail, it still the risk of buckling and breaking of rail due to change of temperature, starting and/or breaking force, axial stress concentration and so on. So, VIC code and many methods has been developed by researchers considering rail-bridge interaction. Although there are many research concerning stability of continuous welded rail about temperature change on bridge and starting and/or breaking force, the study of continuous welded mil for earthquake load is still unsufficient. In this study, the nonlinear seismic response analysis of continuous welded rail on bridge considering soil-structure interaction, geotechnical characteristic of foundation and earthquake isolation equipment has been performed to examine the stability of continuous welded rail.

  • PDF

응답스펙트럼법에 의한 고층 건축물의 탄소성 지진응답해석법 (Nonlinear Response Analysis of Multi-Degree-of-Freedom Building Structures Using Response Spectrum Method)

  • 전대한
    • 한국지진공학회논문집
    • /
    • 제1권4호
    • /
    • pp.1-9
    • /
    • 1997
  • 본 논문은 고층건물의 지진응답해석에서 탄성 및 탄소성 응답스펙트럼 해석법에 대하여 고찰한 것이다. 선형 구조물의 지진응답 해석에 널리 사용되고 있는 응답스펙트럼법은 여러 연구자들에 의해 서로 다른 모드 조합방법으로 제안되었으며, 이들 조합방법에 따른 차이점을 상세히 검토하였다. 탄소성 지진응답해석에 응답스펙트럼법은 아직 널리 사용되고 있지 못한 실정이다. 본 연구에서는 장주기를 갖는 고층 건물의 탄소성 지진응답해석에 응답스펙트럼을 확장하여 적용하는 방법을 제시한다. 본 논문에서 제안한 탄소성 응답스펙트럼법을 이용하면, 고층건물의 예비 설계에서 시간이력해석 대신으로 보다 간편히 탄소성 응답치를 예측하는 도구로서 활용할 수 있을 것으로 사료된다.

  • PDF

비선형 시간 이력법에 의한 목조 가옥의 지진응답해석 (Seismic Response Analysis of Wood Structure Using Nonlinear Time History Method)

  • 김재관
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.212-219
    • /
    • 1998
  • Dynamic analyses are performed for the wood structure modeled as a SDOF hysteretic system. The hysteresis model presented is a modified version of Takeda model. The comparison between the results of numerical simulation and the experimental results show good agreements in overall tendencies. The response of wood structure subjected to artificially generated earthquakes considering site effects is studied. It appears that the response is very strongly influenced by the intensity and the frequency contents of the ground motion.

  • PDF

지반-기초 영향을 고려한 교통신호등주의 지진응답 분석 (Seismic Response Investigation of Traffic Signal-Supporting Structures Including Soil-Foundation Effects)

  • 김태현;전종수;노화성
    • 한국지진공학회논문집
    • /
    • 제27권6호
    • /
    • pp.237-244
    • /
    • 2023
  • This study analyzes the seismic response of traffic light poles, considering soil-foundation effects through nonlinear static and time history analyses. Two poles are investigated, uni-directional and bi-directional, each with 9 m mast arms. Finite element models incorporate the poles, soil, and concrete foundations for analysis. Results show that the initial stiffness of the traffic light poles decreases by approximately 38% due to soil effects, and the drift ratio at which their nonlinear behavior occurs is 77% of scenarios without considering soil effects. The maximum acceleration response increases by about 82% for uni-directional poles and 73% for bi-directional poles, while displacement response increases by approximately 10% for uni-directional and 16% for bi-directional poles when considering soil-foundation effects. Additionally, increasing ground motion intensity reduces soil restraints, making significant rotational displacement the dominant response mechanism over flexural displacement for the traffic light poles. These findings underscore the importance of considering soil-foundation interactions in analyzing the seismic behavior of traffic light poles and provide valuable insights to enhance their seismic resilience and safety.

Effect of viscous dampers on yielding mechanisms of RC structures during earthquake

  • Hejazi, Farzad;Shoaei, Mohammad Dalili;Jaafar, Mohd Saleh;Rashid, Raizal Saiful Bin Muhammad
    • Earthquakes and Structures
    • /
    • 제8권6호
    • /
    • pp.1499-1528
    • /
    • 2015
  • The yielding mechanisms of reinforced concrete (RC) structures are the main cause of the collapse of RC buildings during earthquake excitation. Nowadays, the application of earthquake energy dissipation devices, such as viscous dampers (VDs), is being widely considered to protect RC structures which are designed to withstand severe seismic loads. However, the effect of VDs on the formation of plastic hinges and the yielding criteria of RC members has not been investigated extensively, due to the lack of an analytical model and a numerical means to evaluate the seismic response of structures. Therefore, this paper offers a comprehensive investigation of how damper devices influence the yielding mechanisms of RC buildings subjected to seismic excitation. For this purpose, adapting the Newmark method, a finite element algorithm was developed for the nonlinear dynamic analysis of reinforced concrete buildings equipped with VDs that are subjected to earthquake. A special finite element computer program was codified based on the developed algorithm. Finally, a parametric study was conducted for a three-story RC building equipped with supplementary VD devices, performing a nonlinear analysis in order to evaluate its effect on seismic damage and on the response of the structure. The results of this study showed that implementing VDs substantially changes the mechanism and formation of plastic hinges in RC buildings.