• 제목/요약/키워드: nonlinear dynamical systems

검색결과 130건 처리시간 0.03초

블록펄스함수를 이용한 칼만필터설계 (Design of Kalman Filter via BPF)

  • 안두수;임윤식;이승희;이명규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.667-669
    • /
    • 1995
  • This paper presents a method to design Kalman filter on continuous stochastic dynamical systems via BPFT(block pulse functions transformation). When we design Kalman filter, minimum error valiance matrix is appeared as a form of nonlinear matrix differential equations. Such equations are very difficult to obtain the solutions. Therefore, in this paper, we simply obtain the solutions of nonlinear matrix differential equations from recursive algebraic equations using BPFT. We believe that the presented method is very attractive and proper for the evaluation of Kalman gain on continuous stochastic dynamical systems.

  • PDF

New phenomena associated with the nonlinear dynamics and stability of autonomous damped systems under various types of loading

  • Sophianopoulos, Dimitris S.
    • Structural Engineering and Mechanics
    • /
    • 제9권4호
    • /
    • pp.397-416
    • /
    • 2000
  • The present study deals with the nonlinear dynamics and stability of autonomous dissipative either imperfect potential (limit point) systems or perfect (bifurcational) non-potential ones. Through a fully nonlinear dynamic analysis, performed on two simple 2-DOF models corresponding to the classes of systems mentioned above, and with the aid of basic definitions of the theory of nonlinear dynamical systems, new important phenomena are revealed. For the first class of systems a third possibility of postbuckling dynamic response is offered, associated with a point attractor on the prebuckling primary path, while for the second one the new findings are chaos-like (most likely chaotic) motions, consecutive regions of point and periodic attractors, series of global bifurcations and point attractor response of always existing complementary equilibrium configurations, regardless of the value of the nonconservativeness parameter.

Period doubling of the nonlinear dynamical system of an electrostatically actuated micro-cantilever

  • Chen, Y.M.;Liu, J.K.
    • Smart Structures and Systems
    • /
    • 제14권5호
    • /
    • pp.743-763
    • /
    • 2014
  • The paper presents an investigation of the nonlinear dynamical system of an electrostatically actuated micro-cantilever by the incremental harmonic balance (IHB) method. An efficient approach is proposed to tackle the difficulty in expanding the nonlinear terms into truncated Fourier series. With the help of this approach, periodic and multi-periodic solutions are obtained by the IHB method. Numerical examples show that the IHB solutions, provided as many as harmonics are taken into account, are in excellent agreement with numerical results. In addition, an iterative algorithm is suggested to accurately determine period doubling bifurcation points. The route to chaos via period doublings starting from the period-1 or period-3 solution are analyzed according to the Floquet and the Feigenbaum theories.

비선형(非線型) 시스템의 퍼지 모델링 기법과 안정도(安定度) 해석(解析)에 관한 연구 (Fuzzy Modeling Technique of Nonlinear Dynamical System and Its Stability Analysis)

  • 이준탁;소명옥;이상석;지석준;김태우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.801-803
    • /
    • 1995
  • This paper presents the linearized fuzzy modeling technique of nonlinear dynamical system and the stability analysis of fuzzy control system. Firstly, the nonlinear system is partitionized by multiple linear fuzzy subcontrol systems based on fuzzy linguistic variables and fuzzy rules. Secondly, the disturbance adaptation controllers which guarrantee the global asymptotic stability of each fuzzy subsystem by an optimal feedback control law are designed and the stability analysis procedures of the total fuzzy control system using Lyapunov functions and eigenvalues are discussed in detail through a given illustrative example.

  • PDF

Nonlinear Response of Classical Dynamical Systems to Short Pulses

  • Dellago, Christoph;Mukamel, Shaul
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권8호
    • /
    • pp.1107-1110
    • /
    • 2003
  • Valuable insight into the nonlinear dynamics of a system can be gleaned from its response to a single intense short pulse. We derive expressions for the corresponding nonlinear response functions and show that the fluctuation-dissipation theorem may be extended beyond the linear response limit to an arbitrary pulse intensity. As an illustrative example, we calculate response functions up to 11th order for the regular Lorentz gas in two dimensions.

A stochastic optimal time-delay control for nonlinear structural systems

  • Ying, Z.G.;Zhu, W.Q.
    • Structural Engineering and Mechanics
    • /
    • 제31권5호
    • /
    • pp.621-624
    • /
    • 2009
  • The time delay in active and semi-active controls is an important research subject. Many researches on the time-delay control for deterministic systems have been made (Hu and Wang 2002, Yang et al. 1990, Abdel-Mooty and Roorda 1991, Pu 1998, Cai and Huang 2002), while the study on that for stochastic systems is very limited. The effects of the time delay on the control of nonlinear systems under Gaussian white noise excitations have been studied by Bilello et al. (2002). The controlled linear systems with deterministic and random time delay subjected to Gaussian white noise excitations have been treated by Grigoriu (1997). Recently, a stochastic averaging method for quasi-integrable Hamiltonian systems with time delay has been proposed (Liu and Zhu 2007). In the present paper, a stochastic optimal time-delay control method for stochastically excited nonlinear structural systems is proposed based on the stochastic averaging method for quasi Hamiltonian systems with time delay and the stochastic dynamical programming principle. An example of stochastically excited and controlled hysteretic column is given to illustrate the proposed control method.

Self-Structuring Radial -Basis Function Network for Identification of Uncertain Nonlinear Systems

  • Jun, Jae-Choon;Park, Jang-Hyun;Yoon, Pil-Sang;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.26.6-26
    • /
    • 2001
  • In this paper we introduce a new algorithm that enables radial basis function network(RBFN) to be structured automatically and guarantees the stability of the RBFN. Because this new algorithm is efficient and also have the advantage of fast computational speed we adopt this algorithm as online learning scheme for uncertain nonlinear dynamical systems. Based on the fact that a 3-layered RBFN can represent a specific nonlinear function reasonably well by linearly combining a set of nonlinear and localized basis functions, we show that this RBFN can identify the nonlinear system very well without knowing the information of the system in advance.

  • PDF

6자유도 매니퓰레이터 역기구학 해를 구하기 위한 새로운 방법 (A new method for solving the inverse kinematics for 6 D.O.F. manipulator)

  • 정용욱;류재춘;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.557-562
    • /
    • 1991
  • In this paper, we present new methods for solving the inverse kinematics associated with 6 degree of freedoms manipulator by the numerical method. This method will be based on tracking stability of special nonlinear dynamical systems, and differs from the typical techniques based by the Newton-Gauss or Newton-Raphson method for solving nonlinear equations. This simulation results show that the new method is solving the inverse kinematics of PUMA 560 without the derivative of a given task space trajectories.

  • PDF

Linearization of nonlinear system by use of volterra kernel

  • Nishiyama, Eiji;Kashiwagi, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.149-152
    • /
    • 1996
  • In this paper, the authors propose a new method for linearizing a nonlinear dynamical system by use of Volterra kernel of the nonlinear system. The authors have recently obtained a new method for measuring Volterra kernels of nonlinear control systems by use of a pseudo-random M-sequence and correlation technique. In this method, an M-sequence is applied to the nonlinear system and the crosscorrelation function between the input and the output gives us every crosssection of Volterra kernels up to 3rd order. Once we can get Volterra kernels of nonlinear system, we can construct a linearization method of the nonlinear system. Simulation results show good agreement between the observed results and the theoretical considerations.

  • PDF

Nonlinear Time Series Analysis Tool and its Application to EEG

  • Kim, Eung-Soo;Park, Kyung-Gyu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제1권1호
    • /
    • pp.104-112
    • /
    • 2001
  • Simply, Nonlinear dynamics theory means the complicated and noise-like phenomena originated form nonlinearity involved in deterministic dynamical system. An almost all the natural signals have nonlinear property. However, there exist few analysis software tool or package for a research and development of applications. We develop nonlinear time series analysis simulator is to provide a common and useful tool for this purpose and to promote research and development of nonlinear dynamics theory. This simulator is consists of the following four modules such as generation module, preprocessing module, analysis module and ICA module. In this paper, we applied to Electroencephalograph (EEG), as it turned out, our simulator is able to analyze nonlinear time series. Besides, we could get the useful results using the various parameters. These results are used to diagnostic the brain diseases.

  • PDF