• 제목/요약/키워드: nonlinear drag force

검색결과 24건 처리시간 0.025초

Nonlinear Dynamical Friction of a Circular-orbit Perturber in a Uniform Gaseous Medium

  • 김웅태
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.72.2-72.2
    • /
    • 2010
  • We use three-dimensional hydrodynamic simulations to investigate nonlinear gravitational responses of gas to, and the resulting drag force on, a massive perturber moving on a circular orbit through a uniform gaseous medium. We assume that the background medium is non-rotating and adiabatic with index 5/3, and represent the perturber using a Plummer potential with softening radius a. This work extends our previous study where we showed that the drag force on a straight-line trajectory is proportional to a0.45 if the perturber is massive enough. This indicates that the orbital decay of supermassive black holes (SMBHs) near galaxy centers may take much longer than the prediction of the linear force formula applicable for low-mass perturbers. For the circular orbits are considered, however, we find that the nonlinear drag force becomes independent of a, but dependent instead on the orbital radius R as $\varpropto$ R0.5. This suggests not only that the choices of large values of a, for resolution issues, in recent numerical experiments for mergers of SMBH, are marginally acceptable, but also that the gaseous drag indeed provides an efficient mean for the orbtial decay of SMBHs.

  • PDF

랜덤파랑하중에 대한 Guyed Tower의 동적 거동해석 (Dynamic Analysis of Guyed Tower Subjected to Random Waves)

  • 유정선;윤정봉
    • 한국해양공학회지
    • /
    • 제1권1호
    • /
    • pp.57-64
    • /
    • 1987
  • Methods of nonlinear stochastic analysis of guyed towers are studied in this paper. Two different kinds of nonlinearities are considered. They are the nonlinear restoring force from the guying system and the nonlinear hydrodynamic force. Analyses are carried out mainly in the frequency domain using linearization techniques. Two methods for the linearization of the nonlinear stiffness are presented, in which the effects of the steady offset and the oscillating component of the structural motion can be adequately analyzed. those two methods are the equivalent linearization method and the average stiffness method. The linearization of the nonlinear drag force is also carried out considering the effect of steady current as well as oscillatory wave motions. Example analyses are performed for guyed tower in 300m water. Transfer functions and the expected maximum values of the deck displacement and the bending moment near the middle of the tower are calculated. Numerical results show that both of the frequency domain methods presented in this paper predict the responses of the sturcture very reasonably compared with those by the time integration method utilzing the random simulations wave particla motions.

  • PDF

모리슨 항력을 고려한 파랑 중 TLP 거동 특성 연구 (Numerical Study on Wave-Induced Motion Response of Tension Leg Platform in Waves)

  • 조윤상;남보우;홍사영;김진하;김현조
    • 한국해양공학회지
    • /
    • 제28권6호
    • /
    • pp.508-516
    • /
    • 2014
  • A numerical method to investigate the non-linear motion characteristics of a TLP is established. A time domain simulation that includes the memory effect using the convolution integral is used to consider the transient effect of TLP motion. The hydrodynamic coefficients and wave force are calculated using a potential flow model based on the HOBEM(higher order boundary element method). The viscous drag force acting on the platform and tendons is also considered by using Morison’s drag. The results of the present numerical method are compared with experimental data. The focus is the nonlinear effect due to the viscous drag force on the TLP motion. The ringing, springing, and drift motion are due to the drag force based on Morison's formula.

계류삭의 비선형운동특성해석에 관한 연구 (A Study on Nonlinear Analysis of Mooring Lines)

  • 이상무;김용철;김영환;홍석원;김훈철
    • 대한조선학회지
    • /
    • 제23권1호
    • /
    • pp.3-12
    • /
    • 1986
  • This paper investigates the static configurations and the dynamic behaviors of a single point mooring line. To obtain the static configuration and static tension distribution along the mooring line, including the effect of fluid nonlinear drag and the elasticity of the line, the Runge-Kutta fourth order numerical method was used. The relationship between the horizontal excursion and the horizontal restoring force component of the mooring line, which is very important to a mooring line design, and the effect of a subsurface buoy on the static configuration are presented. In nonlinear dynamic analysis including nonlinear fluid drag acting on the line and geometrical nonlinearity for large deflections, finite element method using updated Lagrangian was used to obtain the solution. In the case of upper end harmonic excitation of the mooring line, the dynamic motion and the tension were also presented.

  • PDF

공기저항이 고려된 Dynamic Elastica 이론을 통한 유연매체의 거동해석 (Analysis of Flexible Media by Dynamic Elastica Theory with Aerodynamic Force)

  • 홍성권;지중근;장용훈;박노철;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.547-550
    • /
    • 2005
  • In many machines handling lightweight and flexible media, such as automated teller machines and printers, the media must transit an open space. It is important to predict the static and dynamic behavior of the sheets with a high degree of reliability The nonlinear theory of the dynamic elastica has often been used to a nonlinear dynamic deflection model. In this paper, the governing equation is derived and simulated by the finite difference method. The analysis has to include aerodynamic effect for more exact behavior analysis, because the flexible media can be deformed drastically by a little force. Therefore aerodynamic force must be applied to the governing equation. Different results were obtained with and without aerodynamic effect and the resulted show that after contacting circular guide, the directions of flexible media of two cases are different.

  • PDF

케이블의 동적거동에 미치는 비선형 영향 (Nonlinear Effects on the Cable Dynamic Behaviour)

  • 신현경
    • 대한조선학회지
    • /
    • 제27권1호
    • /
    • pp.11-16
    • /
    • 1990
  • 거친 해상에서 케이블이 형성된 수 있는 큰 동장력(large dynamic tensile forces)과 기하학적 비선형성(geometric nonlinearity)의 고려는 비선형 케이블 운동방정식(nonlinear cable dynamics)의 해에 상당한 영향을 끼치며 이 결과의 응용은 케이블의 극단장력(extreme tensions)과 slack-and-snapping 케이블의 연구에서 필수적인 부분이 될 것이다. 비선형 유체항력만을 포함한 경우와 기하학적 비선형성과 큰 동장력항을 함께 포함하는 경우의 케이블 운동방정식의 해를 비교하여, 케이블의 동적 거동에 대한 기하학적 비선형과 큰 동장력항의 복합적인 영향을 연구한다. 큰 동장력항과 기하학적 비선형성의 고려는, 최대 동장력의 증가를 가져오나 반면에 최소 동장력의 크기에서의 감소를 가져옴으로, 결국 동장력의 평균값의 상승과 그로인한 케이블의 피로수명 단축을 유발할 수 있다.

  • PDF

투과성 내부재가 설치된 사각형 탱크내의 슬로싱 해석 (Sloshing Analysis in Rectangular Tank with Porous Baffle)

  • 조일형
    • 한국해양공학회지
    • /
    • 제29권1호
    • /
    • pp.1-8
    • /
    • 2015
  • An analytical model of liquid sloshing is developed to consider the energy-loss effect through a partially submerged porous baffle in a horizontally oscillating rectangular tank. The nonlinear boundary condition at the porous baffle is derived to accurately capture both the added inertia effects and the energy-loss effects from an equivalent non-linear drag law. Using the eigenfunction expansion method, the horizontal hydrodynamic force (added mass, damping coefficient) on both the wall and baffle induced by the fluid motion is assessed for various combinations of porosity, submergence depth, and the tank's motion amplitude. It is found that a negative value for the added mass and a sharp peak in the damping curve occur near the resonant frequencies. In particular, the hydrodynamic force and free surface amplitude can be largely reduced by installing the proper porous baffle in a tank. The optimal porosity of a porous baffle is near P=0.1.

군집주행의 종방향 제어를 위한 비선형 제어기 성능 비교 평가 (Comparative Performance Evaluation of Nonlinear Controllers for Longitudinal Control in a Vehicle Platooning)

  • 전성민;최재원;김영호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.218-218
    • /
    • 2000
  • Advanced Vehicle Control Systems(AVCS) is one of the key elements in Intelligent Transportation Systems(ITS). This paper considers the problem of longitudinal control in vehicle platoon on a straight lane of a highway. In a very simplified situation, longitudinal vehicle dynamics contains many nonlinear elements. The nonlinear characteristics are mainly composed of an engine, a torque converter, and a drag force. In this paper, sliding control, one of nonlinear control methods, is applied to longitudinal automated vehicle control for platooning. Output feedback linearization is also simulated for comparison with the sliding control. Simulations for comparative study for the adopted controllers such as sliding control and output feedback linearization are peformed under the same conditions. This Paper aims at clarifying the characteristics of sliding control and output feedback linearization.

  • PDF

Galloping analysis of roof structures

  • Zhang, Xiangting;Zhang, Ray Ruichong
    • Wind and Structures
    • /
    • 제6권2호
    • /
    • pp.141-150
    • /
    • 2003
  • This paper presents galloping analysis of multiple-degree-of-freedom (MDOF) structural roofs with multiple orientations. Instead of using drag and lift coefficients and/or their combined coefficient in traditional galloping analysis for slender structures, this study uses wind pressure coefficients for wind force representation on each and every different orientation roof, facilitating the galloping analysis of multiple-orientation roof structures. In the study, influences of nonlinear aerodynamic forces are considered. An energy-based equivalent technique, together with the modal analysis, is used to solve the nonlinear MDOF vibration equations. The critical wind speed for galloping of roof structures is derived, which is then applied to galloping analysis of roofs of a stadium and a high-rise building in China. With the aid of various experimental results obtained in pertinent research, this study also shows that consideration of nonlinear aerodynamic forces in galloping analysis generally increases the critical wind speed, thus enhancing aerodynamic stability of structures.

Comparison of simulated platform dynamics in steady/dynamic winds and irregular waves for OC4 semi-submersible 5MW wind-turbine against DeepCwind model-test results

  • Kim, H.C.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • 제6권1호
    • /
    • pp.1-21
    • /
    • 2016
  • The global performance of the 5 MW OC4 semisubmersible floating wind turbine in random waves with or without steady/dynamic winds is numerically simulated by using the turbine-floater-mooring fully coupled dynamic analysis program FAST-CHARM3D in time domain. The numerical simulations are based on the complete second-order diffraction/radiation potential formulations along with nonlinear viscous-drag force estimations at the body's instantaneous position. The sensitivity of hull motions and mooring dynamics with varying wave-kinematics extrapolation methods above MWL(mean-water level) and column drag coefficients is investigated. The effects of steady and dynamic winds are also illustrated. When dynamic wind is added to the irregular waves, it additionally introduces low-frequency wind loading and aerodynamic damping. The numerically simulated results for the 5 MW OC4 semisubmersible floating wind turbine by FAST-CHARM3D are also extensively compared with the DeepCWind model-test results by Technip/NREL/UMaine. Those numerical-simulation results have good correlation with experimental results for all the cases considered.