• Title/Summary/Keyword: nonlinear design

Search Result 4,496, Processing Time 0.033 seconds

Performance Evaluation of Mid-IR Spectrometers by Using a Mid-IR Tunable Optical Parametric Oscillator (중적외선 광 파라메트릭 발진기를 이용한 중적외선 분광기 성능 평가)

  • Nam, Hee Jin;Kim, Seung Kwan;Bae, In-Ho;Choi, Young-Jun;Ko, Jae-Hyeon
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.4
    • /
    • pp.154-158
    • /
    • 2019
  • We have used a mid-IR (mid-infrared) continuous-wave (cw) optical parametric oscillator (OPO), developed previously and described in Ref. 12, to build a performance-evaluation setup for a mid-IR spectrometer. The used CW OPO had a wavelength tuning range of $ 2.5-3.6{\mu}m$ using a pump laser with a wavelength of 1064 nm and a fan-out MgO-doped periodically poled lithium niobate (MgO:PPLN) nonlinear crystal in a concentric cavity design. The OPO was combined with a near-IR integrating sphere and a Fourier-transform IR optical spectrum analyzer to build a performance-evaluation setup for mid-IR spectrometers. We applied this performance-evaluation setup to evaluating a mid-IR spectrometer developed domestically, and demonstrated the capability of evaluating the performance, such as spectral resolution, signal-to-noise ratio, spectral stray light, and so on, based on this setup.

Effects of types of bridge decks on competitive relationships between aerostatic and flutter stability for a super long cable-stayed bridge

  • Hu, Chuanxin;Zhou, Zhiyong;Jiang, Baosong
    • Wind and Structures
    • /
    • v.28 no.4
    • /
    • pp.255-270
    • /
    • 2019
  • Aerodynamic configurations of bridge decks have significant effects on the aerostatic torsional divergence and flutter forsuper long-span bridges, which are onset for selection of suitable bridge decksfor those bridges. Based on a cable-stayed bridge with double main spans of 1500 m, considering typical twin-box, stiffening truss and closed-box section, which are the most commonly used form of bridge decks and assumed that the rigidity of those section is completely equivalent, are utilized to investigate the effects of aerodynamic configurations of bridge decks on aerodynamic instability performance comprised of the aerostatic torsional divergence and flutter, by means of wind tunnel tests and numerical calculations, including three-dimensional (3D) multimode flutter analysis and nonlinear aerostatic analysis. Regarding the aerostatic torsional divergence, the results obtained in this study show twin-box section is the best, closed-box section the second-best, and the stiffening truss section the worst. Regarding the flutter, the flutter stability of the twin-box section is far better than that of the stiffening truss and closed-box section. Furthermore, wind-resistance design depends on the torsional divergence for the twin-box and stiffening truss section. However, there are obvious competitive relationships between the aerostatic torsional divergence and flutter for the closed-box section. Flutter occur before aerostatic instability at initial attack angle of $+3^{\circ}$ and $0^{\circ}$, while the aerostatic torsional divergence occur before flutter at initial attack angle of $-3^{\circ}$. The twin-box section is the best in terms of both aerostatic and flutter stability among those bridge decks. Then mechanisms of aerostatic torsional divergence are revealed by tracking the cable forces synchronous with deformation of the bridge decksin the instability process. It was also found that the onset wind velocities of these bridge decks are very similar at attack angle of $-3^{\circ}$. This indicatesthat a stable triangular structure made up of the cable planes, the tower, and the bridge deck greatly improves the aerostatic stability of the structure, while the aerodynamic effects associated with the aerodynamic configurations of the bridge decks have little effects on the aerostatic stability at initial attack angle of $-3^{\circ}$. In addition, instability patterns of the bridge depend on both the initial attack angles and aerodynamic configurations of the bridge decks. This study is helpful in determining bridge decksfor super long-span bridges in future.

Nonlinear Analysis of Shear Behavior on Pile-Sand Interface Using Ring Shear Tests (링전단시험을 이용한 말뚝 기초-사질지반 간 인터페이스 거동 분석)

  • Jeong, Sang-Seom;Jung, Hyung-Suh;Whittle, Andrew;Kim, Do-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.5
    • /
    • pp.5-17
    • /
    • 2021
  • In this study, the shear behavior between pile-sandy soil interface was quantified based on series of rigorous ring shear test results. Ring shearing test was carried out to observe the shear behavior prior to failure and behavior at residual state between most commonly used pile materials - steel and concrete - and Jumunjin sand. The test was set to clarify the shear behavior under various confinement conditions and soil densities. The test results were converted in to representative friction angles for various test materials. Additional numerical analysis was executed to validate the accuracy of the test results. Based on the test results and the numerical validation, it was found that due to the dilative and contractive nature of sand, its interface behavior can be categorized in to two different types : soils with higher densities tend to show peak shear stress and moves on to residual state, while on the other hand, soils with lower densities tend to show bilinear load-transfer curves along the interface. However, the relative density and the confining stress was found to affect the friction angle only in the small train range, and converges as it progresses to large deformation. This study established a large deformation analysis method which can successfully simulate and predict the large deformation behavior such as ring shear tests. Moreover, the friction angle derived from the ring shear test result and verified by numerical analysis can be applied to numerical analysis and actual design of various pile foundations.

Numerical Study on Seismic Performance Evaluation of Circular Reinforced Concrete Piers Confined by Steel Plate (강판으로 보강된 원형철근콘크리트교각의 내진성능 평가에 관한 해석적 연구)

  • Lee, Myung-Jin;Park, Jong-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.116-122
    • /
    • 2021
  • This study quantitatively evaluated the performance improvement of a circular reinforced concrete pier under dynamic load with strengthening using a steel plate. Various three-dimensional elements were applied using the finite element program ABAQUS. The analytical parameters included the ratios of the steel cover length to the pier's total height and the ratios of the steel cover thickness to the pier diameter for inelastic-nonlinear analysis. The lower part of the pier had fixed boundary conditions, and lateral repetitive loads were applied at the top of the pier. The pier was investigated to evaluate the dynamic performance based on the load-displacement curve, stress-strain curve, ductility, energy absorption capability, and energy ratio. The yield and ultimate loads of piers with steel covers increased by 3.76 times, and the energy absorption capability increased by 4 times due to the confinement effects caused by the steel plate. A plastic hinge part of the column with a steel plate improved the ductility, and the thicker the steel plate was, the greater the energy absorption capacity. This study shows that the reinforced pier should be improved in terms of the seismic performance.

Hysteretic behaviors and calculation model of steel reinforced recycled concrete filled circular steel tube columns

  • Ma, Hui;Zhang, Guoheng;Xin, A.;Bai, Hengyu
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.305-326
    • /
    • 2022
  • To realize the recycling utilization of waste concrete and alleviate the shortage of resources, 11 specimens of steel reinforced recycled concrete (SRRC) filled circular steel tube columns were designed and manufactured in this study, and the cyclic loading tests on the specimens of columns were also carried out respectively. The hysteretic curves, skeleton curves and performance indicators of columns were obtained and analysed in detail. Besides, the finite element model of columns was established through OpenSees software, which considered the adverse effect of recycled coarse aggregate (RA) replacement rates and the constraint effect of circular steel tube on internal RAC. The numerical calculation curves of columns are in good agreement with the experimental curves, which shows that the numerical model is relatively reasonable. On this basis, a series of nonlinear parameters analysis on the hysteretic behaviors of columns were also investigated. The results are as follows: When the replacement rates of RA increases from 0 to 100%, the peak loads of columns decreases by 7.78% and the ductility decreases slightly. With the increase of axial compression ratio, the bearing capacity of columns increases first and then decreases, but the ductility of columns decreases rapidly. Increasing the wall thickness of circular steel tube is very profitable to improve the bearing capacity and ductility of columns. When the section steel ratio increases from 5.54% to 9.99%, although the bearing capacity of columns is improved, it has no obvious contribution to improve the ductility of columns. With the decrease of shear span ratio, the bearing capacity of columns increases obviously, but the ductility decreases, and the failure mode of columns develops into brittle shear failure. Therefore, in the engineering design of columns, the situation of small shear span ratio (i.e., short columns) should be avoided as far as possible. Based on this, the calculation model on the skeleton curves of columns was established by the theoretical analysis and fitting method, so as to determine the main characteristic points in the model. The effectiveness of skeleton curve model is verified by comparing with the test skeleton curves.

Moment-Curvature Relationship of RC Structural Walls with Confined Boundary Elements Using Pre-Fabricated Rectangular Continuous Hoops (사각 연속횡보강 선조립철근으로 단부횡보강된 RC 구조벽체의 모멘트-곡률 관계)

  • Kim, Hui-Do;Lee, Seung-Hyun;Cho, Jae-Hui;Kim, Sung-Hyun;Kang, Su-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.1
    • /
    • pp.45-55
    • /
    • 2022
  • Because boundary confinement details proposed in the current design standards are significantly inferior in workability and production quality, it is necessary to develop boundary confinement details of RC structural walls that are capable of ensuring seismic performance and workability. With the recent development of the wire rod manufacturing technology, various pre-fabricated continuous hoop details can be manufactured. In this study, an analysis was conducted on the moment-curvature relationship of RC structural walls to which the pre-fabricated continuous hoop details were applied. According to the nonlinear cross-section analysis, the RC structure wall to which the details of the pre-fabricated continuous hoop details are applied can ensure seismic performance as the area of the pre-fabricated continuous hoop increases. Based on these research results, when applying the pre-fabricated continuous hoop in detail, it is necessary to secure the area of the pre-fabricated continuous hoop as much as the area of the existing boundary confinement.

Comparative Evaluation on the Cost Analysis of Software Development Model Based on Weibull Lifetime Distribution (와이블 수명분포에 근거한 소프트웨어 개발모형의 비용 분석에 관한 비교 평가)

  • Bae, Hyo-Jeong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.193-200
    • /
    • 2022
  • In this study, the finite-failure NHPP software reliability model was applied to the software development model based on the Weibull lifetime distribution (Goel-Okumoto, Rayleigh, Type-2 Gumbe), which is widely used in the software reliability field, and then the cost attributes were compared and evaluated. For this study, failure time data detected during normal operation of the software system were collected and used, the most-likelihood estimation (MLE) method was applied to the parameter estimation of the proposed model, and the calculation of the nonlinear equation was solved using the binary method. As a result, first, in the software development model, when the cost of testing per unit time and the cost of removing a single defect increased, the cost increased but the release time did not change, and when the cost of repairing failures detected during normal system operation increased, the cost increased and the release time was also delayed. Second, as a result of comprehensive comparative analysis of the proposed models, it was found that the Type-2 Gumble model was the most efficient model because the development cost was lower and the release time point was relatively faster than the Rayleigh model and the Goel-Okumoto basic model. Third, through this study, the development cost properties of the Weibull distribution model were newly evaluated, and the analyzed data is expected to be utilized as design data that enables software developers to explore the attributes of development cost and release time.

A Study on the Abstraction of Movements Based on Laban's Space Theory "Choreutics" (라반의 공간조화이론 "코레우틱스(Choreutics)"를 활용한 움직임의 추상적 시각화 연구)

  • Kim, Hyeran;Lee, Sang Wook
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.3
    • /
    • pp.371-381
    • /
    • 2017
  • This paper presents a methodology for creating abstract animation based on the human movement theories originating from the work of dance theorist Rudolf von Laban. Laban Movement Analysis is a method and language for describing, visualizing, interpreting and documenting all varieties of human movement, and Choreutics is based on universal patterns of nature and of human as part of a universal design. Laban defines the space of movements in a profoundly dualistic way. Outwardly, his objective and scientific definitions provide a concrete base for generating human movements in computer graphics in terms of geometric and motion primitives such as points, lines, planes, polygons, linear and nonlinear movements. On the other hand, he also offers a system for understanding the subtle characteristics about the way a movement is dynamically done with respect to inner intention. Laban's interpretations of human motion can be utilized potentially in plastic arts and computer arts. Our work was inspired by those physical and psychological analyses and computer algorithms have been developed for creating abstract animation. We presented our computer animation works entitled "Choreography" in the exhibitions: a special section in "2015 Craft Trend Fair" and "Make Your Movement" held in the Korean Cultural Centre in UK, 2016. In this paper, we describe our ideas and methods for creating abstract object movements based on the Laban's motion representations.

Analysis of Plastic Hinge on Pile-Bent Structure with Varying Diameters (변단면 단일 현장타설말뚝의 소성힌지 영향분석)

  • Ahn, Sangyong;Jeong, Sangseom;Kim, Jaeyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3C
    • /
    • pp.149-158
    • /
    • 2010
  • In this study, the behavior of Pile-Bent structure with varying diameters subjected to lateral loads were evaluated by a load transfer approach. An analytical method based on the beam-column model and nonlinear load transfer curve method was proposed to consider material non-linearity (elastic, yielding) and P-${\Delta}$ effect. For an effective analysis of behavior Pile-Bent structure, the bending moment and fracture lateral load of material were evaluated. And special attention was given to lateral behavior of Pile-Bent structures depending on reinforcing effect of materials and ground conditions. Based on the parametric study, it is shown that the maximum bending moment is located within a depth (plastic hinge) approximately 1~3D (D: pile diameter) below ground surface when material non-linearity and P-${\Delta}$ effect are considered. And distribution of the lateral deflections and bending moments on a pile are highly influenced by the effect of yielding. It is also found that this method considering material yielding behavior and P-${\Delta}$ effect can be effectively used to perform the preliminary design of Pile-bent structures.

Numerical Analysis of Wave Transformation of Bore in 2-Dimensional Water Channel and Resultant Wave Loads Acting on 2-Dimensional Vertical Structure (2차원수조내에서 단파의 변형과 구조물에 작용하는 단파파력에 관한 수치해석)

  • Lee, Kwang Ho;Kim, Chang Hoon;Kim, Do Sam;Hwang, Young Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5B
    • /
    • pp.473-482
    • /
    • 2009
  • This study numerically discusses wave forces acting on a vertical wall such as breakwaters or revetments, subjected to incident undular or turbulent bores. Due to the complex hydrodynamics of bore, its wave forces have been predicted, mainly through laboratory experiments. Numerical simulations in this paper were carried out by CADMAS-SURF(CDIT, 2001), which is based on Navier-Stokes momentum equations and VOF method (Hirt and Nichols, 1981) for tracking free water surface. Its original source code was also partly revised to generate bore in the numerical water channel. Numerical raw data computed by CADMAS-SURF included great strong spike phenomena that show the abrupt jumps of wave loads. To resolve this undesired noise of raw data, the band-pass filter with the frequency of 5Hz was utilized. The filtered results showed reasonable agreements with the experimental results performed by Matsutomi (1991) and Ramsden (1996). It was confirmed that CADMASSURF can be applied to the design of coastal structures against tsunami bores. In addition, the transformation process and propagation speed of bores in the same 2-d water channel were discussed by the variations of water level for time and space. The numerical results indicated that the propagation speed of bore was changed due to the nonlinear interactions between negative and reflected waves.